
AFRL-RV-HA-TR-2009-1050 (II)

)

J

. O

Plasma Interactions with Spacecraft (II)

V. A. Davis
M. J. Mandell

Science Applications International Corporation
10260 Campus Point Drive
San Diego, CA 92121

Scientific Report No. 2

1 Apr 2009

Approved for public release; distribution unlimited.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
29 Randolph Road
AIR FORCE MATERIEL COMMAND
HANSCOM AFB, MA 01731-3010

This technical report has been reviewed and is approved for publication.

AFRL-VS-HA-TR-2009-1050 (II)

v>^ u
/Signed/ IS /Signed/

ADRIAN WHEELOCK DWIGHT T. DECKER, Chief
Contract Manager Space Weather Center of Excellence

This report has been reviewed by the ESC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical
Information Center (DTIC). All others should apply to the National Technical
Information Service.

If your address has changed, if you wish to be removed from the mailing list, or if
the addressee is no longer employed by your organization, please notify
AFRL/VSIM, 29 Randolph Rd., Hanscom AFB, MA 01731-3010. This will assist
us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Using Government drawings, specifications, or other data included in this document
for any purpose other than Government procurement does not in any way obligate the
U.S. Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is published in the interest of scientific and technical information exchange
and its publication does not constitute the Government's approval or disapproval of its
ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway. Suite 1204. Arlington, VA 22202-
4302 Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS,

1. REPORT DATE (MM-DD-YYYY)
04-01-2009

2. REPORT TYPE
Scientific Report No. 2

3. DATES COVERED (From - To)
03-01-2007 to 03-31-2009

4. TITLE AND SUBTITLE

Plasma Interactions with Spacecraft
N2kDB Database and Memory Management Software for Nascap-2k,
Version 1.0
Draft Documentation

5a. CONTRACT NUMBER
FA8718-05-C-0001
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
63401F

6. AUTHOR(S)

V.A. Davis, N.R. Baker, B.G. Gardner, R.A. Kuharski,
M.J. Mandell, A.J. Ward, K.G. Wilcox

5d. PROJECT NUMBER
5021

5e. TASK NUMBER
RS
5f. WORK UNIT NUMBER
Al

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Science Applications International Corporation
10260 Campus Point Drive, Mailstop A-2A
San Diego, CA 92121

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory
2 9 Randolph Road
Hanscom AFB, MA 01731

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/RVBXR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

AFRL-RV-HA-TR-2009-1050 (II)
12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES 20100315115
14. ABSTRACT

Nascap-2k is a spacecraft charging and plasma interactions code designed to be used by
spacecraft designers, aerospace and materials engineers, and space plasma environments
experts to study the effects of both the natural and spacecraft-generated plasma environment
on spacecraft systems. N2kDB is the new database and memory management system developed for
Nascap-2k.

15. SUBJECT TERMS

Nascap-2k, Potentials, Space environment, Spacecraft, Spacecraft charging, DSX, N2kDB

16. SECURITY CLASSIFICATION OF:

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

111

19a. NAME OF RESPONSIBLE PERSON
Adrian Wheelock
19b. TELEPHONE NUMBER (include area
code)

(781) 377-9668

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

CONTENTS

Page

1 Introduction 1

1.1 Intended Audience 1

1.2 Document Summary 1

2 Requirements Document 1

3 Design Considerations 2

3.1 SQLite versus SAIC-Developed Database Software Core 2

3.2 Simple Memory Manager in C++ versus Fortran 90 Dynamic Memory Allocation 3

3.3 Additional Requirements 3

4 Architecture 4

4.1 Global Structure 4

4.1.1 Interim Global Structure 5

4.2 Database File Structure 6

4.2.1 File Type 6

4.2.2 Data Item Names 6

4.2.3 File Contents 7

4.3 Database Access 7

4.3.1 Data Initialization 7

4.3.2 String Comparisons 7

4.3.3 Functional Requirements 7

4.3.4 N2kDB Functions 7

4.3.5 N2kDB Internal Structure 8

4.3.6 N2kDB Tool 8

5 Technical Issues 8

5.1 Operating System 8

5.2 Source Code Control 8

5.3 Coding Standards 9

5.3.1 C++ 9

5.3.1.1 Style 9

5.3.1.2 Functionality 10

6 Detailed Design 10

i

6.1 Database Access 10

6.1.1 Open Database 11

6.1.2 Close Database 12

6.1.3 Memory Management 12

6.1.4 Grid Functions 12

6.1.5 MSIO File Index 12

6.1.6 Material, Species, and Grid Functions 13

6.1.7 History Function 13

6.1.8 Error Handling 13

6.1.9 Sizes 13

6.1.10 Other 14

6.2 N2kDB Internal Structure 14

6.2.1 Error Handling 18

6.2.2 MemoryManager Class 18

6.2.3 N2kDBDataModel Class 18

6.2.3.1 Open Database 19

6.2.3.2 Close Database 19

6.2.3.3 Read and Write 19

6.2.3.4 Other 19

6.2.3.5 Material, Species, and Grid functions 19

6.2.3.6 Grid Functions 20

6.2.3.7 Sizes 20

6.2.4 History Function 21

6.2.4.1 Data Items 21

6.2.4.2 Errors 24

6.2.5 Database Class 25

6.2.6 GridData Class 28

6.2.7 MSIO Class 31

6.2.7.1 MSIO Files 37

6.3 N2kDBTool 38

6.3.1 User Interface 39

6.3.2 Code Structure 42

6.3.2.1 N2kDB Tool library 42

ii

6.3.2.2 N2kDB Tool Java interface 44

6.3.2.3 N2kDB Tool Console User Interface 48

Testing 48

7.1 Testing of Each Class 48

7.1.1 Unit Test Code Guidelines 48

7.1.2 MSIO Unit Tests 49

7.1.2.1 Test 4 49

7.1.2.2 Test 5 49

7.1.2.3 Test 6 50

7.1.2.4 Test 7 50

7.1.2.5 Test 11 50

7.1.2.6 Test 12 50

7.1.2.7 Test 13 50

7.1.2.8 Test 15 50

7.1.2.9 Test 15b 51

7.1.2.10 Test 16 51

7.1.2.11 Test 17 51

7.1.2.12 Test 18 51

7.1.2.13 Test 19 51

7.1.2.14 Test 23 51

7.1.2.15 Test 32 52

7.1.3 N2kDBDataModel Tests 52

7.1.3.1 Test#l 52

7.1.3.2 Test #2 52

7.1.3.3 Test #3 52

7.1.3.4 Test #4 52

7.1.3.5 Test #5 52

7.1.3.6 Test #6 52

7.1.3.7 Test #7 52

7.1.3.8 Test #8 53

7.1.3.9 Test #9 53

7.1.3.10 Test #10 53

7.1.3.11 Test #11 53

iii

7.1.3.12 Test #12 53

7.1.3.13 Test #13 53

7.1.3.14 Test #14 53

7.1.3.15 Test #15 53

7.1.3.16 Test #16 53

7.1.3.17 Test #17 53

7.1.3.18 Test #18 53

7.1.3.19 Test #19 54

7.1.3.20 Test #20 54

7.1.3.21 Test #21 54

7.1.3.22 Test #22 54

7.1.3.23 Test #23 54

7.1.3.24 Test #24 54

7.1.3.25 Test #25 54

7.1.3.26 Test #26 54

7.2 Consistency with Specification 54

8 Intermediate Implementation of N2kDB 55

References 57

Appendix A. Nascap-2k 3.2 Structure 59

A.l DBLib 60

A.l.l Buffio 60

A.1.2 Dbdata 60

A.1.3 Dbinfo 61

A.l.4 Dbfile 61

A.1.5 DbLib Errors 61

A. 1.6 DbLib Commands 63

A.l.7 Summary of DBLib Functionality Used 66

A.2 DynaBase 67

A.3 Data Requests from Nascap-2k Java Interface 67

A.4 Data 68

A.4.1 Summary Comments 73

A.5 Datastorage 73

A.6 Searches Contemplated 74

iv

Appendix B. New Data Item Names 75

Appendix C. N2kDbTest 79

C.l Details of N2kDBTest 79

Appendix D. Nascap-2k Testing 83

Appendix E. Requirements Verification 85

E.l Introduction 85

E.l.l Purpose 85

E.1.2 Project Scope 85

E.2 Overall Description 85

E.2.1 Product Perspective 85

E.2.2 Product Features 85

E.2.3 Operating Environment 85

E.2.4 Design and Implementation Constraints 86

E.2.5 User Documentation 86

E.3 System Features 86

E.3.1 Data Storage Capacity and Format 86

E.3.1.1 Description and Priority 86

E.3.1.2 Functional Requirements 86

E.3.1.2.1 Maximum Database File Size 86
E.3.1.2.2 Maximum Record Size 86
E.3.1.2.3 Maximum Rows in a Table 86
E.3.1.2.4 Data Format (ASCII, XML, binary,...) 87
E.3.1.2.5 Data in Single or Multiple Files 87
E.3.1.2.6 File Sharing 87
E.3.1.2.7 Need for Standard Access Format 87
E.3.1.2.8 Data Structure 87
E.3.1.2.9 Error handling requirements 87

E.3.2 Data Transfer Rate 87

E.3.2.1 Description and Priority 87

E.3.2.2 Functional Requirements 88

E.3.2.2.1 Size and Frequency of Reads and Writes 88
E.3.2.2.2 Allowable Impact on Calculation Time 88
E.3.2.2.3 Error Handling Requirements 88

E.3.3 Memory Management 88

E.3.3.1 Description and Priority 88

E.3.3.2 Functional Requirements 88

v

E.3.3.2.1 Maximum Memory Required 88
E.3.3.2.2 Allowable Impact on Calculation Time 88
E.3.3.2.3 Error Handling Requirements 88
E.3.3.2.4 Data Size Determination 88
E.3.3.2.5 Multiprocessor Operation 89

E.3.4 Data Access 89

E.3.4.1 Description and Priority 89

E.3.4.2 Functional Requirements 89

E.3.5 Support of Pre-Existing Databases 89

E.3.6 Data Structure 89

E.4 External Interface Requirements 90

E.4.1 User Interfaces 90

E.4.2 Hardware Interfaces 90

E.4.3 Software Interfaces 90

E.4.4 Communications Interfaces 90

E.5 Additional Requirements from Section 3.3 of this Document 90

E.6 Appendix References 90

Appendix F. Implementation Plan 93

F.l Schedule 93

F.2 Tasks 93

F.3 Revisions Needed to FORTRAN Portion of Nascap-2k 94

Appendix G. Open Issues 97

VI

FIGURES

Page

Figure 1. Anticipated structure of Nascap-2k4.1 main components 4

Figure 2. Intermediate implementation code structure 5

Figure 3. Components of N2kDB in relation to the database file, Nascap-2k, and the
supporting tools N2kDB Tool and N2kDBTest 15

Figure 4. Structure of MSIO class 34

Figure 5. Screen that appears when an MSIO file is opened 40

Figure 6. Screen that appears when a Nascap-2k database is opened 41

Figure 7. Screen that appears when button on Figure 5 or Figure 6 is clicked 42

Figure Al. Nascap-2k 3.2 structure of Main components 59

Figure Cl. N2kDBTest Java interface 80

vn

TABLES

Page

Table 1. Comparison of benefits and drawbacks to using SQLite vs. MSIO as the
database software core 3

Table 2. N2kDB classes 8

Table 3. N2kDB Application Programmer Interface 11

Table 4. How to get number of items from N2kDB 14

Table 5. Classes and structs of N2kDB 17

Table 6. Public methods of the MemoryManager class 18

Table 7. Public methods of N2kDBDataModel class 21

Table 8. Selected private methods of N2kDBDataModel class 23

Table 9. Error codes 24

Table 10. Public Database class methods 26

Table 11. Selected private Database class methods 28

Table 12. Public methods of GridData class 29

Table 13. Selected private member functions of GridData class 31

Table 14. Public methods of MSIO class 32

Table 15. Public member functions of MSIO:Header class 36

Table 16. Content of MSIO metadata record 38

Table 17. N2kDB Tool Library 43

Table 18. Methods of N2kDB Tool class of N2kDB Tool Java interface 45

Table 19. Native methods used by N2kDB Tool Java interface 46

Table 20. Methods of Java DataPanel class of N2kDB Tool Java interface 48

Table Al. Major components of Nascap-2k 3.2 60

Table A2. Error messages reported by DbLib subroutines 62

Table A3. Error messages reported by existing MSIO 63

ix

Table A4. Keywords used in present database commands 64

Table A5. Information returned from dbinf o (Inquire Grid) commands 66

Table A6. DynaBase entry points 67

Table A7. Data requests from user interface 68

Table A8. Data items associated with surfaces 69

Table A9. Data items associated with surface nodes 69

Table A10. Data items associated with volume elements 70

Table Al 1. Data items not associated with surfaces or volume elements 71

Table A12. Quantities that are used as indexes 73

Table Bl. Data items associated with surfaces 76

Table B2. Data items associated with surface nodes 76

Table B3. Data items associated with volume elements 77

Table B4. Data items not associated with surfaces or volume elements 78

Table Cl. Contents of N2kDBTest.DP after execution 81

Table C2. Contents of N2kDBTest.PTl file 82

Table C3. Differences between N2kDBTest.PTl and N2kDBTest.PT2 82

Table Fl. Implementation steps 93

Table F2. Tasks to be completed 94

1 INTRODUCTION

Nascap-2k is a spacecraft charging and plasma interactions code designed to be used by
spacecraft designers, aerospace and materials engineers, and space plasma environments experts
to study the effects of both the natural and spacecraft-generated plasma environment on
spacecraft systems. N2kDB is the new database and memory management system developed for
Nascap-2k.

Background material can be found in Software Requirements Specification for Nascap-2k
Database and Memory Manager and in appendices to this document.

1.1 Intended Audience

This document is intended primarily for use by software development teams of products that
use N2kDB.

1.2 Document Summary

This document describes the design of N2kDB, the new Nascap-2k Database and Memory
Management Software.

Section 3 describes the general design considerations. The architecture of the code is
described in Section 4. Some additional technical issues are discussed in Section 5, and Section 6
describes the detailed design.

The testing program is described in Section 7 and the intermediate implementation is
described in Section 8.

Appendix A describes the database used in earlier versions of Nascap-2k\

Appendix B lists the new data item names. Appendix C describes the test program developed
to verify that N2kDB has the desired functionality, and Appendix D describes the procedure for
verifying correct behavior in Nascap-2k.

Appendix E is an itemized list of how N2kDB meets the requirements.

The implementation plan is described in Appendix F, and open issues are listed in Appendix
G.

2 REQUIREMENTS DOCUMENT

This document builds on the Software Requirements Specification for Nascap-2k Database
and Memory Manager, which appears as an appendix to the first interim report for this contract,
AFRL-VS-H A-TR-2007-1062.

3 DESIGN CONSIDERATIONS

Software Requirements Specification for Nascap-2k Database and Memory Manager
provides background material and describes most of the considerations important in the design of
the new software. Some general design considerations, assumptions, dependencies, constraints,
and goals are discussed below.

The database and memory management tasks are performed separately, and both function on
all jVa.scap-2A'-supported platforms. The database is accessible from FORTRAN with Cray style
pointers, C++, and Java. The database supports all database call capabilities used by Nascap-2k
3.2 (the last version to be released with the old database) and desired for Nascap-2k 4.1 (the first
version to be released with the new database.).

3.1 SQLite versus SAIC-Developed Database Software Core

We considered two approaches to database software. We considered the public domain code
package SQLite and our own MSIO.

SQLite is a public domain C software library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine. Bindings (separate code packages that
talk to the SQLite C code from another language) exist for Fortran, C++, and Java. It appears to
be possible to access an SQLite database from Microsoft EXCEL or ACCESS using ODBC. Our
initial assessment is that SQLite is the only SQL access tool amenable for use in Nascap-2k.
Others have licensing difficulties, allow only one process to access the database at once, or
require client-server operations.

Nascap-2k 3.2 uses MSIO (Mass Storage Input and Output, a Fortran and C simulation of
CDC Fortran commands developed by SCUBED in the 1970s) for reading from and writing to
the random access database file. The set of C functions, f astio, performs the opening, closing,
reading, and writing. A set of four Fortran subroutines, OPENMS, CLOSMS, READMS, and WRITMS

maintains and uses the user-allocated index that keeps track of the size and location of each piece
of data in the database. Each piece of data is identified either by a unique string (name key file)
or by the location of its specification in the index (number key file).

Before making a decision, we tested the use of SQLite through a prototype implementation,
While speed was found to be an issue, preliminary testing shows that the use of BLOBs (Binary
Large Object) for large data structures such as the grid definitions improves speed significantly.
It is known that, with the new database, a large fraction of the database calls will not be needed
and minimizing those is expected to improve speed still more. The requirement on speed for the
new database is that it uses no more than a comparable fraction of total computation time (-5%)
as the current database implementation uses.

With either SQLite or MSIO we would access the database from the Java code by calling a
"X A S fi

C++ dynamically linked library through Java Native Interface (JNI). ' ' '

After considering the issues noted in Table 1 below, we decided to rewrite MSIO to
overcome its present limitations and use it for the new Nascap-2k database.

Table 1. Comparison of benefits and drawbacks to using SQLite vs. MSIO as the database
software core.

PROS CONS

SQLite Truly open-source with no restrictions.
Standard database access approaches.
Standard access from multiple

languages.
Access using commercial SQLite

database access codes possible.

Slow (can be mitigated by using BLOBs and
minimizing number of database calls).

Code comprehensibility presently unknown.
General code rather than tailored.
SQLite bindings may not be strictly cross platform.

MSIO Source code is our own.
Speed. Fastest possible database access.
Optimized for Nascap-2k.
Intimate knowledge of code going

forward.
Transparency to other developers at

Hanscom.
Ensures that code is cross platform.

Does not conform to any commonly recognized
standard.

May be necessary to create capabilities that are
already available in SQLite.

All new code: no testing history.

3.2 Simple Memory Manager in C++ versus Fortran 90 Dynamic Memory Allocation

A simple C++ memory manager was written during the proof-of-concept prototyping. It was
decided to expand on this approach. If speed requires, the approach can be modified to allow for
more explicit control.

3.3 Additional Requirements

In addition to those requirements given in Software Requirements Specification for Nascap-
2k Database and Memory Manager, we have the following requirements:

Nascap-2k also operates on an Apple Macintosh Pro running OS X Unix (10.5 (Leopard))
with 2 dual core 64-bit Intel Xeon CPUs for a total of 4 processors. In this environment, Intel
compilers are used.

Nascap-2k is, so far as we know, compatible with Windows Vista and Windows 7, and has
been superficially tested.

All of the new software will be written in a cross platform manner as much as possible.

The Nascap-2k database file will be platform independent.

The software structure and internal and external documentation will be such that the software
is easy to maintain. Specifically, all code and documentation will be kept together in the
SourceSafe database, coding standards will be developed and employed, appropriate levels of
encapsulation and generality will be used to simplify analysis of the science code operations.

code structures and data storage structures in which variables cannot be viewed in a debugger
will be avoided, thorough documentation will be written in concert with code development,
and all documentation will be understandable to programmers unfamiliar with database
jargon.

4 ARCHITECTURE

4.1 Global Structure

The Nascap-2k 4.1 structure will be as shown in Figure 1. Database access will be
accomplished through the new dynamically linked library N2kDB. (A dynamically linked library
with JNI is needed for access from the Java user interface) All of the computational modules,
along with the user interface, will communicate directly with N2kDB. N2kDB is also accessible
independently through N2kDB Tool.

Figure 1. Anticipated structure of Nascap-2k 4.1 main components.

With the new structure, the separate DynaBase dynamically linked library (which was
mainly a wrapper from the C++ science coding to the Fortran database coding) will be
unnecessary. In addition to handling reading from and writing to the database, it restructures
some of the data to fit the data organization within BEMDLL or the user interface. This
functionality will be accomplished by C++ and Java classes within BEMDLL and the user
interface.

4.1.1 Interim Global Structure

As an interim step, the code structure shown in Figure 2 has been implemented. This version
of Nascap-2k is 4.0.#, where # indicates successive intermediate versions as the new database is
more fully implemented. Fortran subroutines were written (dbdata, dbf ile, dbinf o, and
buf f io) that take the keyword list arguments used by Nascap-2k 3.2. and return pointers to the
same locations within N2kDB.

Xerces
(LINUX only)

N2kDB Tool

1 Tracker
/rap

N2kDB

Scannei
•Vrap pel-

Figure 2. Intermediate implementation code structure.

4.2 Database File Structure

4.2.1 File Type

N2kDB uses updated MSIO random access files. MSIO has been rewritten using modern
C++ object-oriented coding techniques. We use 4-word keys for each record, along with the
words specifying the record's length and location. We also added a new type of key to MSIO, a
hybrid key. A hybrid key is a combination of a name key and number key in the record
immediately following.

Metadata, such as size of the index, size of a sector, type of index, database version number,
etc., is stored before the beginning of the index.

4.2.2 Data Item Names

Each item stored has a unique case-insensitive 16 character (4 words) identifier except for,
time dependent data, which is stored in a file that uses 16 characters and an integer in the
following word as an identifier (5 words). The choice of 16 characters balances the clarity that
can be achieved with longer data item names with the desire for compactness and the nuisance of
extra blanks. The integer gives the time index. In the file index, the characters are strictly upper
case in order to avoid the complications of mixed-case. The characters are converted to upper
case on reading and writing, so that the rest of the code can be insensitive to case. The database
software knows which data item is stored in which file and uses the index of the appropriate file
to locate the data.

Each gridded data item has a data item name of up to 12 characters. The data item name for
database access is the 12 characters, an underscore, and three digits that specify the grid.
(12characters_###) Gridded data has keywords that start with "GElm," "GNod," or "Gnod8," for
element centered data, 4 value per node data, and 1 value per node data.

Data items names for data associated with surfaces start with "Srf". Data items names for
data associated with nodes start with "Nod". Data item names for data associated with
conductors start with "Cnd".

Each material, grid, and species will be stored in a single record. (In the interim
implementation, the materials and species records are not initially implemented.) The data item
names are Material_###, Grid_###, and Species_##. This convention limits the number of
materials and the number of grids to 999 and the number of species to 99. The first item in each
material and species record is the name. Allowance is made for names up to 80 characters.

For special element information, the data item names are MtrxElems_###### and
BndSrfcs_######, where ###### is the special element number. This convention limits the
number of special elements to 99999.

The particle data will be saved with data item names of the form PrtclsS ##_****, where ##
is the species number and **** is the page number. This convention limits the number of pages
to 9999. (In the interim implementation, the particle data storage has not been revised.) The only
information presently stored in the particle file header that is not redundant is IPType. IPType

will be added to the /ActPrt/ common block. This will allow different type particles of the same
species to exist.

Data item names for miscellaneous data start with "Gen". The data item name for the
general problem data is "General".

4.2.3 File Contents

The database consists of up to four types of files: prefix.NDB, prefix.NSE, prefix.NY*T##,
and/wr/tx.NTM. These files contain general information, special elements, pages of particles,
and time dependent information respectively. This approach allows the user to share special
element information between projects, to arbitrarily delete all the particles of a given species, and
to arbitrarily delete time history information.

Data with data item names of the form Prtcls_S##_**** are stored in the filepre/tv.NPT##.
Data with data item names of the form MtrxElems_###### and BndSrfcs_###### are stored in
the file/7re/Lc.NSE (special elements), Time dependent data is stored in the file prefix.NTM. All
other data is stored in prefix.NDB.

The NDB file allows for 10,000 keys. The NSE file allows for 100,000 keys. The NPT file
allows for 100,000 keys. The NTM file allows for 100,000 pairs of hybrid keys.

4.3 Database Access

4.3.1 Data Initialization

Initialization of values is not to be handled by the database software. The existing
subroutines s3zero and s3set are used for initialization.

4.3.2 String Comparisons

All string comparisons are case insensitive.

4.3.3 Functional Requirements

Nascap-2k has functional requirements of file access that have been addressed in the design
of database access code. These are enumerated in Section 3.4.2 of Software Requirements
Specification for Nascap-2k Database and Memory Manager.

4.3.4 N2kDB Functions

The N2kDB functions that are called directly by Fortran, by Fortran wrapper functions, by a
C++ class within BEMDLL, and by a Java class in the interface are tabulated in Section 6.1. All
functions for which access from Java is contemplated have JNI wrappers. All functions have
wrappers that convert Fortran character variables to null-terminated strings. All functions return
an integer that specifies any errors. Memory for grid array data is allocated by N2kDB. Memory
for all other data is handled by the calling routine. The MSIO index is written by each write
function.

4.3.5 N2kDB Internal Structure

N2kDB is written in C++.

N2kDB has an outer shell with the methods accessible from Fortran, C++, and Java. The
wrapper subroutines of N2kDB call members of the N2kDBDataModei and MemoryManager
classes. The list of classes appears in Table 2.

Table 2. N2kDB classes.

Class name
N2kDB

N2kDBDataModel

Memory Manager

Database

GridData

MSIO

4.3.6 N2kDB Tool

N2kDB Tool reads and writes individual data items, examines the index and pulls out tables
of numbers.

N2kDB Tool provides a user interface directly to a Nascap-2k database. It uses N2kDB. It
allows the user to view (read only) the database structure, the MSIO index—including ASCII
data item names and record location and sizes. It allows the user to see any metadata that
describes the database. The code allows read/write access to individual records.

5 TECHNICAL ISSUES

5.1 Operating System

N2kDB was being developed with the same operating system and compilers as Nascap-2k. It
is fully compatible with Win32, Red Hat LINUX and multiprocessor MacOS X UNIX (10.5)
environments. The MacOS X environment is used to test multiprocessor and 64-bit operations.

5.2 Source Code Control

All of the new software is kept in Source Safe with Nascap-2k. As with Nascap-2k, makefiles
for LINUX use are also kept under Source Safe control.

5.3 Coding Standards

To the greatest extent possible, all new coding is in C++, with externally exposed method
calls. The exposed methods will consist of language appropriate wrappers accessible from
Fortran, C++, and Java. Java access is provided via JNI wrappers. Fortran coding is permissible
only when necessary to integrate with existing legacy Fortran-77 code. Fortran-90 may be used
provided it is structured to integrate smoothly with existing legacy Fortran-77 code.

5.3.1 C++

To the extent practical, a uniform style and standards were used. In addition to those of the
SAIC Monitoring Systems Division, the following standards were followed.

5.3.1.1 Style

All instance variables will be private. Getters and setters will provide access to them.
Methods, properties, and const fields can be public or private, as appropriate.

Every method will be preceded by a documentation comment explaining the purpose of the
method. Every public property will be preceded by a documentation comment explaining the
purpose of the property and describing the value it represents.

Parameter names will be explicit, especially if they are integers or Booleans.

Each variable will be defined just before it is used for the first time rather than at the
beginning of the block.

Standard structural constructs will be used as follows:

Use the if statement to select a statement for execution based on the value of a Boolean
expression.

Use the for statement only when a variable starts from a beginning value, and is incremented
or decremented by a constant.

Use the f oreach statement to iterate through a collection that does not need to be changed.

Use the while statement to execute a statement until a specified expression evaluates to
false.

Use the do statement to execute a statement repeatedly until a specified expression evaluates
to false, at least one time even if the expression never evaluates to true.

Use the switch statement to handle multiple selections by passing control to one of the case
statements within its body.

Use the try-catch statement to handle raised exceptions. All code that can throw an
exception must be wrapped in a try-catch statement:

Use Pascal casing (The first character is upper case, and the first letter of each word is also
upper case) for classes and Camel casing (The first character is not upper case, but the first letter
of each word is upper case) for methods, properties, and variables.

Use the Visual Studio defaults for tab stops and code formatting. Use blank lines freely to
separate parts of a method that are logically distinct. Opening curly braces will always be placed
on the next line after the keyword with which they are associated. Keywords and closing curly
braces must always line up vertically.

5.3.1.2 Functionality

Appropriate levels of encapsulation and generality will be used to simplify analysis of the
science code operations. Code structures and data storage structures in which variables cannot be
viewed in a debugger will be avoided.

Additionally, the C++ standard library will be used as much as possible. For example, the
C++ string class will be used rather than char arrays, and the standard library's data structure
classes (such as vector, list, or map) will be used rather than creating new classes.

6 DETAILED DESIGN

This section describes the design of N2kDB and N2kDB Tool.

6.1 Database Access

N2kDB is a dynamic linked library with functions that are called directly by Fortran, by
Fortran wrapper functions, by a C++ class within BEMDLL, or by a Java class in the interface.
These functions are given in Table 3. The argument "void *data" is the memory location at
which the data is located. These functions have the following characteristics:

• All functions for which access from Java is contemplated have JNI wrappers. Among
numerous other issues, the JNI wrappers convert single precision values stored in the
database to double precision values.

• All functions with char* arguments that require Fortran access have Fortran callable
wrappers with room for the length of the character variable in the argument list, as passed by
Fortran. The wrapper then converts the character variable to a null-terminated char* for use
by the C++ coding.

• All functions return an integer that specifies an error code, if any.

• When "nwords" is included in the argument list of a Read function, the value before the call
is the maximum value and the return value is the actual number of words read.

• The calling routine is responsible for the allocation of space, except for arguments given as
"void** data," in which case N2kDB allocates the necessary space.

10

Table 3. N2kDB Application Programmer Interface.

Function name and arguments

AllocateMemory(int* nwords, void** data)

AllocateMemoryGrid(int* dimension, int* grid, void** data)

ClearDeadSpaceQ

CloseDatabase()

DBErrorMessage(int* messageNumber, char** ErrorMessage)

DeleteAllGridsQ

DeleteMaterial(char* name)

DeleteSpecies(char* name)

FreeMemory(void *data)

GetCount(char* name, int* number)

GetLength(char* name, int* number)

GetMaterials(int* nwords, vector char* names)

GetSpecies(int* nwords, vector char* names)

OpenDatabase(char* prefix, char* version)

ReadDatabase(char* name, int* nwords, int* time, void *data)

ReadDatabaseGrid(char* name, int*dimension, int* grid, int* time, void** data)

ReadGridData(int* number, int* nwords, void *data)

ReadHistory(char* name, int* entries, int* numberOfEntries, int* nwords, void *data)

ReadMaterialData(char* name, int* nwords, void *data)

ReadSpeciesData(char* name, real* charge, real* mass, real* fraction)

WriteDatabase(char* name, int* nwords, int* time, void *data)

WriteDatabaseGrid(char* name, int* dimension, int* grid, int* time, void *data)

WriteGridData(int* number, int* nwords, void *data)

WriteMaterialData(char* name, int* nwords, void *data)

WriteSpeciesData(char* name, real* charge, real* mass, real* fraction)

6.1.1 Open Database

OpenDatabase has the following functionality.

• It opens the database and initializes the memory manager.

• Only one database can be open at one time.

• It creates the database if it does not already exist.

• It specifies the files that form the database.

11

• It reads and verifies the index.

• It verifies compatibility of database and MSIO version numbers. The version number in
the argument list should identify the code as well as have an incremental number.

• Optional read only access to the database is accommodated, so that N2kDB Tool can be
used simultaneously. It appears that on some operating systems, it is possible for two
processes to have the same file open for read/write access.

6.1.2 Close Database

closeDatabase closes the database

CloseDatabase releases all allocated memory.

In general, the index is not written by CloseDatabase.

6.1.3 Memory Management

MiocateMemoryGrid, AiiocateMemory, and FreeMemory allocate and release memory for
gridded quantities, special element data, and perhaps for pages of particles without reading from
or writing to the database. MiocateMemoryGrid is used on creation of a new quantity (rather
than reading it from the database).

ReadDatabaseGrid also handles memory management. If the requested data does not exist
in the database, ReadDatabaseGrid initializes the allocated space to zero.

The calling subroutine is responsible for allocation of space for all other data.
AiiocateMemory may be used.

The calling program is responsible for calling FreeMemory to release any allocated memory.
Additionally, CloseDatabase releases all memory.

N2kDB does not track which data item is associated with which memory location.

6.1.4 Grid Functions

For ReadDatabaseGrid, WriteDatabaseGrid, and AllocateMemoryGrid, the dimension is

the number of items per grid point. The code underneath keeps track of the grid size.

6.1.5 MSIO File Index

The index is written after any operation that modifies the index and not otherwise. When
writing a record that will not fit in the existing space, the new record is written at the end of the
file, leaving the old data as dead space.

12

ciearoeadspace copies data within the database to remove all the dead space. We need to
consider under what circumstances ciearDeadSpace should execute. It should not be done every
time the database is closed.

6.1.6 Material, Species, and Grid Functions

The DeieteAllGrids function deletes the matrix elements (data item names
MtrxElems_###### and BndSrfcs_######) as well as the grid structure for all the grids.

The Read and Write Grid, Material, and Species data functions are separate functions for
convenience. Almost the same functionality can be obtained from using the ReadDatabase and
WriteDatabase functions for the appropriate data item name. These functions free Nascap-2k
from dealing directly with the data storage structure. Grids are addressed by number and
Materials and Species are addressed by name. The amount of information associated with each
grid and each material is specified by the calling code.

GetMaterials and GetSpecies return arrays with contents that are the material and species
names respectively.

6.1.7 History Function

ReadHi story returns time histories of potentials and the various currents for a specified list
of surfaces. It is only called from Java and C++ and it allocates space for the data returned.

The surface number is the Fortran number. The first one is "1".

6.1.8 Error Handling

The first argument of DBErrorMessage is the input—and is the return value of a N2kDB
function. The char** argument is the return value, which is the error message to which the first
argument corresponds. As the return value is a char** for which space is specified in the
wrapper, the C++ and Java calling codes do not need to allocate space. The Fortran wrapper
truncates a message that is too long.

6.1.9 Sizes

The GetLength and Getcount functions are used to get the number of various items. They
use the index to obtain the number of surfaces, nodes, conductors, special elements, species,
materials, grid, timesteps, and pages of particles. Table 4 specifies how these functions are used
to get useful quantities. The Getcount function gets the number of items with data item names
that start with the specified string.

13

Table 4. How to get number of items from N2kDB.

Function Specifics

Number of Surfaces Length of'Srf_Element' record/4

Number of Nodes Length of 'NodPosition' record/3

Number of Conductors TBD

Number of Grids Number of records with data item names of form 'Grid_###'

Number of Species Number of records with data item names of form 'Species_##'

Number of Materials Number of records with data item names of form 'Material ###'

Number of Pages Number of records with data item names of form 'Prtcls_S###_****' where
is the species number.

Number of
ParticlesOnPage

Length of 'Prtcls_S##_****' where ## is the species number and **** is the
page number.

6.1.10 Other

If the time value is "-1", the data is treated as time independent.

N2kDB maintains a hard-coded table of the few data items that go in files other than the
main one.

6.2 N2kDB Internal Structure

The N2kDB dynamic library consists of an API (application programmer interface), N2kDB,
and five classes. N2kDB is the interface between the Java, Fortran, and C++ code of Nascap-2k,
and the C++ database code. Interfaces to all the functions of Table 3 are provided from Fortran,
C++, and Java. (Except that the four "Grid" functions are only called from Fortran, and the
"AllocateMemory" functions are not called from Java.) It provides all the necessary wrappers
between Nascap-2k and the C++ database code, so the rest of the database code does not need to
accommodate the other languages and Nascap-2k does not need to accommodate the specific
needs of the database code. For example, character data coming from Fortran, such as data item
names, needs to include both the character string and the length of the string. N2kDB converts this
information into a C++ string. Calls from Java are through JNI. N2kDB initializes MemoryManager
and then interface with N2kDBDataModel and MemoryManager methods.

14

N2kDB Tool

MemoryManager MSIOTest

MSIO

Database File(s)

Figure 3. Components of N2kDB in relation to the database file, Nascap-2k, and the
supporting tools N2kDB Tool and N2kDBTest. DMTest and MSIOTest contain the unit
tests of functionality. The lines show the data flow. Data moves down in write operations
and up in read operations.

The Database, MSIO, and MemoryManager classes can all be used independently of the
components above them in Figure 3.

N2kDBDataModel takes requests from N2kDB and routes them to the correct database
components. For example, a request for grid data involves obtaining grid metadata from the
GridData class, allocating memory via the MemoryManager class, and finally data retrieval from
the Database class. Requests for other data, however, only involve calls to the Database class.
At a high level, N2kDBDataModel opens the Database and initializes any other components
requiring initialization. The memory manager is automatically used for grid data. (While it is
presently contemplated that the memory manager is instantiated every time a database is opened,
the database code does not require it.) At destruction, it closes the database and cleans up.
DMTest contains the unit tests of the components of N2kDBDataModei.

All classes perform data reads and writes using void pointers. The calling code (N2kDB) is
responsible for typecasting the data into appropriate data-types.

The MemoryManager class is a separate class within N2kDB. MemoryManager is implemented
as a singleton class, so that there is only one instance and it is accessible from N2kDB and
GridData. Software Requirements Specification for Nascap-2k Database and Memory Manager

15

specifies that the memory manager not be a part of N2kDB. The separation of the
MemoryManager class from the N2kDBDataModel and Database classes adequately addresses this
requirement. The requirements of Section 3.3 of the specification are addressed by the Memory
Manager class.

The Database class provides public interfaces to the internal structure of the database. It
provides the more user friendly methods (compared with MSIO) for manipulating the contents of
the database file.

The GridData class knows the grid structure and handles reading, writing, and memory
requests. The Database class instantiates the GridData class.

The MSIO class controls reading from and writing to the database and the Database class
provides the only access to its methods. Its component classes are described in Section 6.2.7
below. MSiOTest contains the unit tests of the components of MSIO.

16

Table 5. Classes and structs of N2kDB.

Classes

N2kDBDataModel N2kDBDataModel class

DM Error Error class for N2kDBDataModel

Database Database class

GridData GridData class

MemoryManager MemoryManager class

MSIO::Header An MSIO file's header. A Header consists of some metadata and a series of
index values (location, length pairs). A header's size can be set when an
MSIO file is first created, but it can't be changed afterward

MSIO::Index Index is a convenience for Header's internal use, which is why it's private
with Header as a friend

MSIO::MetaData Descriptive data placed at the beginning of an MSIO file

MSIO::MSIO Class for creating, reading from, and writing to MSIO files

MSIO::MSIOError Error codes for the MSIO class

Starts
DatabaseConfig Configuration information for a Database. Presently, this is used to specify

the index sizes of the different types of files

GridStructure Structure that assists in grid bookkeeping by keeping a particular grid's x, y,
and z parameters grouped together. It is used by GridData in a std::map to
associate a grid number with its structure information.

KeyDataSet< T > Test structure containing a string key and an array of data associated with
the key. (Used for testing only.)

KeyTimeDataSet< T > Test structure containing a {string, int} key and an array of data associated
with the key. This is used for time files. (Used for testing only.)

MSIO::NameNumKey struct for the purpose of placing a single object into a std::map

ParticleFiles< T > Since there can be between 0 and 99 particle files, this struct associates
particle {key, data} sets with specific particle files.

testStruct Used to automate the test process.

TimeKey Allows Database to treat {name, num} keys (time dependent keys) as a
single unit, when necessary

17

6.2.1 Error Handling

The lowest level routines, with single failure modes, return a Boolean indicating success of
the operation. Higher level routines, with multiple failure modes, return an integer indicating the
error. Each class has its own error list as an enumeration. Utility functions that convert the error
enumeration value of one class to the error enumeration of the calling class exist for all classes.
In some cases (MSIO and N2kDBDataModei), a separate class is used to hold the error
enumeration and its utility functions.

6.2.2 MemoryManager Class

The MemoryManager takes memory requests from the calling code and allocates memory. A
pointer to the memory is returned to the caller through an output void** parameter. Each request
always allocates more memory; memory is not reused. When the MemoryManager receives
requests, it stores the pointer to the allocated memory in an internal vector. When the
MemoryManager is destroyed via its deieteinstance function, or when its function
f reeAllMemory is called, the MemoryManager loops through its vector of memory pointers and
frees all of the memory it has allocated. Calling code may also call the MemoryManager's
f reeMemory function, which takes a memory pointer as an argument, to request that a particular
allocation be freed. The MemoryManager class is data type agnostic. Memory requests are in units
of words.

Even though the MemoryManager class is initialized by N2kDBDataModel, the GridData class
directs requests to the MemoryManager. MemoryManager uses the Singleton design pattern, which
ensures that a class has only one instance and provides a global point of access to that instance.

Table 6. Public methods of the MemoryManager class.

Methods
static MemoryManager * getlnstance () Returns to the caller the single instance of the

MemoryManager. Creates this instance if it does not already
exist.

static int deletelnstance() Deletes the single instance of the MemoryManager.

static int allocateMemory (void
**callerPtr Address, size_t nwords)

Allocates the amount of memory requested by the caller.

static int freeAllMemory() Frees all memory allocated by the MemoryManger.

static int freeMemory (void
*callerPtrAddress)

Frees one piece of memory allocated by the
MemoryManager.

6.2.3 N2kDBDataModel Class

N2kDB provides wrappers to N2kDBDataModel, so that most of the public methods of
N2kDBDataModel correspond to N2kDB functions. There are three methods that retrieve the last
error code, the last error message, and translate an error code to a message. The additional public

18

methods are used by N2kDB Tool. The public methods are given in Table 7. Selected private
methods are given in and the error codes are listed in Table 9.

6.2.3.1 Open Database

N2kDBDataModel opens the database and initializes the memory manager.

The database is opened by the instantiation of the Database class. The Database object is
allocated with a new and deleted with a delete to insure that the existing object is completely
destroyed. Before a database is opened, any database that is already opened is closed and its
corresponding Database object deleted.

If a database that does not yet exist is opened, a new one is created. No new file is created
until data is written into the new database.

N2kDBDataModel reads and verifies the index.

N2kDBDataModel confirms compatibility of N2kDB and of database file(s) with the version
string provided by calling code. The version string identifies the calling code as well as including
an incremental number.

Much of the functionality of this function is handled by the Database class.

6.2.3.2 Close Database

cioseDatabase closes the database.

CloseDatabase releases all allocated memory.

In general, the index is not written by CloseDatabase.

6.2.3.3 Read and Write

Data is stored using name keys and hybrid keys. The hybrid keys consist of a name and an
integer time index. For convenience, these hybrid keys are referred to as "time" keys. If a read or
write function includes "time" as an argument, a hybrid, or "time" key is used.

6.2.3.4 Other

N2kDBDataModei does not request data from specific files. Rather, it requests a particular
data item name or a particular type of data, and Database maps the data item name to a file and
a name or hybrid key and retrieves the data.

6.2.3.5 Material, Species, and Grid functions

The DeieteAllGrids function deletes the matrix elements (data item names
MtrxElems_###### and BndSrfcs_######) as well as the grid structure for all the grids.

19

ReadGridData(number,*data) and WriteGridData(number,*data) are equivalent to
ReadDatabase(Grid_number,20,-1, *data) and WriteDatabase(Grid_number,20,-1,
*data), except that WriteGridData updates the grid structure array in the GridData object.

WriteMaterialData(name, int* nwords, *data) is the same as

• If there is a ### such that the first 80 bytes of the record Material_### are the same as
name, replace the rest of the bytes with the contents of *data.

• If not, add a new record of the form Material_### with name in the first 80 bytes and the
contents of *data in the next nwords words.

The function ReadMaterialData(name, int* nwords, *data) locates the record
Material_### such that the first 80 bytes of the record are the name and returns the rest of the
record to data.

WriteSpeciesData(name, real* charge, real* mass) is the same as

• If there is a ### such that the first 80 bytes of the record Species_### are the same as
name, write data (the charge, mass, and fraction) into the following words.

• If not, add a new record of the form Species_### with contents name in the first 80 bytes,
with data (the charge, mass, and fraction) in the following words.

The function ReadSpeciesData (name, real* data) locates the record Species_### such
that the first 80 bytes of the record are the name. The following three words are the charge, the
mass, and the fraction.

GetMaterials returns an array with contents the first 80 bytes (as characters) of the records
Material_###.

Getspecies returns an array with contents the first 80 bytes (as characters) of the records
Species_###.

6.2.3.6 Grid Functions

The AllocateMemoryGrid, ReadGridDatabase, and WriteGridDatabase methods are
interfaces to the GridData class.

6.2.3.7 Sizes

The GetLength and Getcount functions are used to get the number of various items. The
GetCount function gets the number of items with data item names that start with the specified
string.

20

6.2.4 History Function

ReadHistory returns time histories of the specified keyword for a specified list of surfaces.
The surface number is the Fortran number. The first one is "1".

6.2.4.1 Data Items

N2kDBDataModel has functions that return all the data item names and the associated record
lengths for use by N2kDB Tool.

Table 7. Public methods of N2kDBDataModel class.

Method Functionality

int AllocateMemoryGrid (int
dimension, int gridNum, void
**data)

Allocates memory for data associated with grid nodes or elements of
the specified grida grid. This is an interface to
GridData:: AllocateMemory.

int ClearDeadSpace () Compacts all files associated with a Database. This is an interface to
Database: :ClearDeadSpace.

int CloseDatabase () Closes the currently open Database. This also instructs the
MemoryManager to free all memory.

int DeleteAllGrids () Instructs the GridData class to delete all grid data. This is an interface
to GridData::DeleteAllGrids.

int Deleteltem (string name,
string typeOfltem)

Searches the database for a key of format typeOfltem ### (where
typeOfltem is Material, Species, or another string) whose first 80 bytes
of associated data contain name and then deletes the record.

int GetCount (string key, int
&count)

Retrieves the number of database keys beginning with a prefix. This is
an interface to Database::GetCount.

int GetFilenames (vector< string
> Afiles)

Retrieves a list of all filenames associated with the open Database.
This is an interface to Database: :GetFilenames.

int GetKeys (vector< string >
&keys)

Get all of the name keys from the dbdatabase. This does not return the
time keys. This is an interface to Database::GetKeys.

int GetKeys (vector< string >
&keys, vector< string >
&timeStringKeys, vector< int >
&timeIntKeys)

Retrieves all of the keys from the dbdatabase. This is an interface to
Database:: GetKeys.

int GetKeys (vector< string >
&keyStrings, vector< int >
&keylnts)

Retrieves the time keys from the dbdatabase. This is an interface to
Database: :GetKeys.

int GetLastError () Retrieves the most recent error code that was set.

string GetErrorMessage (int
code)

Translates an error code to its string.

string GetLastErrorMessage () Retrieves the most recent error message that was set. If the function
that set the error message also included additional information (that is
appended to the the default message for its code), that information is
returned by this function, as well.

21

Table 7. Public methods of N2kDBDataModel class, (cont.)

Method Functionality

int GetLength (string key, int
&length)

Returns the length in words of the data associated with a name key.
This is an interface to Database::GetLength.

int GetLength (string key,int
time, int &length)

Returns the length in words of the data associated with a time key.
This is an interface to Database: :GetLength.

int GetMaterials (int&
maxMaterials, vector< string>&
keysFound)

Returns a vector containing the first 80 bytes of the data for all the
keys of the form "Material_###".

int Getltem(string typeOfltem
int& maxltems, vector<
string>& itemNames)

Returns a vector containing the first 80 bytes of the data for all the
keys of the form typeOfltem_###, where typeOfltem can be Material,
Species, or another string.

string GetVersionString () Returns the version string of the open Database.

int OpenDatabase (string prefix,
string version)

Opens a Database. The following actions are performed. (1) The
Database is opened via Database::OpenDatabase. (2) The
MemoryManager is initialized. (3) The GridData class is initialized.

int ReadDatabase (string key, int
&nwords, void *data, int
maxwords)

Reads the data associated with a name key. The caller must pre-
allocate the data buffer. This is an interface to
Database:: ReadDatabase.

int ReadDatabase (string key, int
time, int &nwords, void *data,
int maxwords)

Reads the data associated with a time key. The caller must pre-allocate
the data buffer. This is an interface to Database::ReadDatabase.

int ReadDatabaseGrid (string
name, int dimension, int grid, int
time, void *data)

Reads grid data data associated with grid nodes or elements of the
specified grid from the Database. Also allocates memory. This is an
interface to GridData: :ReadDatabaseGrid.

int ReadDatabaseGrid (string
name, int dimension, int grid,
void **data)

Reads data associated with grid nodes or elements of the specified
grid from the Database. Also allocates memory. This is an interface to
GridData: .ReadDatabaseGrid.

int ReadGridData (int number,
int nwords, void *data)

Read a grid structure from the database. N2kDBDataModel takes the
grid number and calls GridData::ReadGridData. GridData in turn
constructs the key "Grid_###" and reads that information from the
database The caller must pre-allocate a buffer to store the grid
structure.

int ReadHistory (string key, int
*entry, int nentries, int &ntimes,
void *data, int maxwords)

Retrieves the value of the specified entries associated with the
specified "key" at each timestep.

int ReadltemData (string name,
string typeOfltem, int nwords,
void* data, int maxwords)

Searches the database for a key of format typeOfltem_### (where
typeOfltem can be Material, Species, or another string) for which the
first 80 bytes of associated data contain name. The following words
are then returned in "data." Space for data is allocated by the calling
program.

int WriteDatabase (string key,
int nwords, void *data)

Writes nwords of data to the database at the location given by a name
key. This is an interface to Database::WriteDatabase.

22

Table 7. Public methods of N2kDBDataModel class, (cont.)

Method Functionality

int WriteDatabase (string key,
int time, int nwords, void *data)

Writes nwords of data to the database at the location given by a time
key. This is an interface to Database::WriteDatabase.

int WriteDatabaseGrid (string
name, int dimension, int grid, int
time, void *data)

Writes data associated with grid nodes or elements of the specified
gridgrid data to the Database, for a time key. This is an interface to
GridData:: WriteDatabaseGrid.

int WriteDatabaseGrid (string
name, int dimension, int grid,
void *data)

Writes grid datadata associated with grid nodes or elements of the
specified grid to the Database, for a name key. This is an interface to
GridData:: WriteDatabaseGrid.

int WriteGridData (int
gridNumber, int nwords, void
•data)

Writes grid structure information to the Database. This is an interface
to GridData::WriteGridData. Grids must be written in sequence.

int WriteltemData (string name,
string nameofltem, int nwords,
void* data)

Write a record with name in the first 80 bytes and data in the
following words. If there is a key of format typeOfltem_### (where
typeOfltem is Material, Species, or another string) in the database
whose first 80 bytes of associated data contain name, use the existing
key. If not, use a new key of format typeOfltem_###..

Table 8. Selected private methods of N2kDBDataModel class.

Method Functionality

int convertOpenDatabaseError(int dbCode,
bool setError = true)

Takes a Database error code (DMError) generated by
OpenDatabase and converts it to an N2kDBDataModel
error code (DMError).

int convertReadDatabaseError(int dbCode,
bool setError = true)

Takes a Database error code (DMError) generated by
ReadDatabase and converts it to an N2kDBDataModel
error code (DMError).

int convertReadDatabaseGridError(int
gridCode, bool setError = true)

Takes a GridData error code (GridError) generated by
ReadDatabaseGrid and converts it to an
N2kDBDataModel error code

int convertReadGridDataError(int gridCode,
bool setError = true)

Takes a GridData error code (GridError) generated by
* ReadGridData and converts it to an

N2kDBDataModel error code
* (DMError).

int convertWriteDatabaseError(int dbCode,
bool setError = true)

Takes a Database error code (DMError) generated by
* WriteDatabase and converts it to an

N2kDBDataModel error code (DMError).

23

Table 8. Selected private methods of N2kDBDataModel class, (cont.)

Method Functionality

int convertWriteDatabaseGridError(int
gridCode, bool setError = true)

Takes a GridData error code (GridError) generated by
* WriteDatabaseGrid and converts it to an

N2kDBDataModel error code
* (DMError).

int convertWriteGridDataError(int gridCode,
bool setError = true)

Takes a GridData error code (GridError) generated by
* WriteGridData and converts it to an

N2kDBDataModel error code
* (DMError).

6.2.4.2 Errors

The error codes returned from N2kDBDdataModel are listed in Table 9.

Table 9. Error codes.

OK,

CANT OPEN,
CANT CLOSE,

DB OPEN NO GENERAL FILE
CANT ALLOCATE MEMORY,
CANTALLOCATEMEMORY GRID,
CANT DELETE GRIDDATA KEY,

CANT_DELETE_GRID_KEY,
CANT_FIND_GRID,
CANTINITGRIDDATA,
CANTINITMEMORYMANAGER,
CANT READ, // Generic error
DB MSIO FILE MISMATCH
DB WRONG KEY TYPE

DB CANT OPEN FILE

DB CANT OPEN WRITE
DB CANT READ NDB KEYS

DB CANT READ NPT KEYS
DB CANT READ NTM KEYS

DB CANT READ NSE KEYS
CANT READ_GRID_STRUCTURE,
CANT READ GRID DATABASE,
CANT RELEASE GRID MEMORY,
CANT WRITE, V Generic eror
CANT WRITEGRIDDAT ABASE,

24

Table 9. Error codes, (cont.)

CANT WRITE GRID IN USE,

CANT_WRITE_GRID_OUT_OF_SEQUENCE,

CANT_WRITE_GRID STRUCTURE, // Generic error

CANT WRITE PARTICLE FILE,

CANT WRITE VERSION KEY,

DB NOT OPEN,

DB READ ONLY,

DEAD SPACE ERROR,
DELETE ALL GRIDS ERROR,
EMPTY KEY,
EMPTY_DATA,

KEY NOT FOUND,
NODATABUFFER,

DM DATA BUFFER TOO SMALL

DM DATA BUFFER TOO LARGE

NOT OPEN,
DM UNKNOWN ERROR
DM NUM OF ERRORS
DM RECORD NOT FOUND
DM RECORD TYPE NOT FOUND

6.2.5 Database Class

The Database class provides public interfaces to the internal structure of the database. For
example, the database as a whole consists of up to four types of files (preftx.NDB, prefix.NSE,
/?re//jc.NPT##, andpre/bcNTM), but this information is unknown to the rest of the system. When
N2kDBDataModei calls Database's OpenDatabase method, Database receives a "prefix" string,
which is the name of the database, and a version string that identifies the calling code and a
database version number. The Database class then performs the following steps:

1. Search for appropriately named "prefix.suffix" files located in its current directory.

2. For existing databases, performs integrity checking on the database files. All Databases
require a prefix.NDB file, and this file must have a version number string.

3. For all database files it finds, retrieve the name keys from the files and create a mapping
from data item names to database files. This simplifies database reads.

4. Perform integrity checking on the keys. Keys that are in the wrong file are ignored.

5. Confirm compatibility with MSIO version number for all files of database.

25

6. Reads the database version number from each file of the database and confirm
compatibility with N2kDB and calling code version number.

Database specifies the file names of the files that comprise the database. It associates certain
data item names with certain files and specifies the MSIO file type of each file.

The database version is stored in the main database file. The data item name is DB Version
and the value is of the form AAA.XX.YY.ZZ, where AAA specifies the calling code ("NAS" for
Nascap-2k).

It is contemplated that at some future time the Database class will be split into two classes, a
base class (Database) and a derived class (N2kDatabase). The base class will provide the
generic database functions (e.g. talking to MSIO files), and the derived class will have all the
Nascap-2k specific knowledge (e.g. which file contains which data items).

The Database class performs reads and writes on data using void pointers.

Table 10. Public Database class methods.

Method Functionality

int OpenDatabase (string prefix,
string version, bool
readOnly=false)

Opens a database. Searches for all files named "prefix.suffix", where
suffix is all suffixes associated with Database files. An existing
database must contain a general database file (.NDB), and this file
must have a version key. If Database files are found but there is no
general file, this is an error. If the general file does not have a version
key, this is an error.

int OpenDatabase (string prefix,
string version, bool readonly,
const DatabaseConfig &dc)

Open a database and specify some configuration information, such as
the maximum number of keys. This only applies to new DBs.

int GetVersionNumber () Returns the version number as an integer. For example, a version of
1.2.3 would be returned as 10203. A version of 11.22.33 would be
returned as 112233.

string GetVersionString () Returns the database version string.

bool IsOpen ()

int ReadDatabase (string name,
int &lengthRead, void *data, int
maxWords)

Reads the data associated with a name key. The caller must pre-
allocate the data buffer.

int ReadDatabase (string name,
int time, int &lengthRead, void
*data, int maxWords)

Reads the data associated with a time key (name-number key). The
caller must pre-allocate the data buffer.

int WriteDatabase (string name,
int words, void *data)

Writes the data associated with a name key.

int WriteDatabase (string
name,int time, int words, void
•data)

Writes the data associated with time key (name-number key) to the
database.

int DeleteRecord (string name) Removes a name key from the database.

26

Table 10. Public Database class methods, (cont.)

Method Functionality

int DeleteRecord (string name,
int time)

Removes a time key from the database.

int FindKeys (string keyPrefix,
vector< string > &keysFound)

Retrieves the name keys beginning with a prefix.

int GetKeys (vector< string >
&keys)

Retrieves all name keys from the database.

int GetKeys (vector< string >
&nameKeys, vector< int >
&numKeys)

Retrieve the time keys from the database. Each T index of nameKeys
and numKeys correspond to each other.

int GetKeys (vector< string >
&keys, &timeKeyNames,
vector< int > &timeKeyNums)

Retrieves all keys from the database. Each entry of timeKeyNames and
timeKeyNums correspond to each other, which could produce multiple
entries in timeKeyNames. For example, if the key pairs {"AAA", 1},
{"AAA", 2}, and "BBB", 3} were inserted, timeKeyNames would
contain {"AAA", "AAA", "BBB"} and timeKeyNums would contain
{1,2,3}.

int GetLength (string name,
int& length)

Get length in words of the data associated with a name key.

int GetLength (string name, int
time, int& length)

Get length in words of the data associated with a time key.

int GetCount (string name) Returns number of name keys that start with the specified value.

int GetFilenames (vector<
string > &files)

Get the names of the MSIO files associated with the open database.

int CloseDatabase () Closes the Database. Member variables are cleared/emptied.

int ClearDeadSpace () Removes dead space from all Database files. Calls
MSIO::compactMS.

string GetErrorMessage (int
code)

Translates an error code to its string.

int GetLastError () Retrieves the most recent error code that was set.

string GetLastErrorMessage () Retrieves the most recent error message that was set. If the function
that set the error message also included additional information (that is
appended to the the default message for its code), that information is
returned by this function, as well.

27

Table 11. Selected private Database class methods.

Method Functionality

Bool readNptKeys () Searches the prefix.NPT## files (particles) and places the keys in
the keyFileMap.

Bool readNseKeys () Searches the prefix.NSE files (special elements) and places the keys
in the keyFileMap.

Bool readNtmKeys () Searches the prefix.NTM files (time dependent quantities) and
places the keys in the keyFileMap.

Bool readNdbKeys () Searches the prefix.NDB files (general) and places the keys in the
keyFileMap.

bool isNptKey (string key) Determines whether a key is a particle key

bool isNseKey (string key) Determines whether a key is a special element key

bool isNdbtKey (string key) Determines whether a key is not a particle or special element key.

Int checkDatabaseFiles () When a database is opened, this function confirms that all files are
compatible with each other.

MSIO::MSIO* findMsioFile
(string key, uint32 time = 0)

Searches the keyFileMap (and timeKeyFileMap) and returns a
pointer to the MSIO file it's in. If the key is not in a file, NULL is
returned. This is to reduce the number of (relatively slow) disk
accesses.

MSIO::MSIO* findParticleFile
(string name)

Map a species name to a specific particle file.

void getMsioFiles
(vector<MSIO: :MSIO*>&
msioFiles)

Retrieve the names of the MSIO files that Database is using.

int getParticleFileNumber (string
particleFileName)

Parses the name of the particle file and returns the numeric part of
the filename extension. For example, if the particle file were named
"prefix.NPT04", this function would return 4.

int getParticleSpeciesNumber
(string particleKey)

Parses the name of the particle species (key) and returns the species
number. For example, given a key "Prtcls_S01_2345", this function
would return 1.

bool parseVersionString () Parse the version string from the general database file.

int readVersionKey () Reads the version key from the general database file.

void setVersionString () Initializes the versionString member with the default string.

int writeVersionString () Writes the versionString to the general database file.

6.2.6 GridData Class

The class GridData is used by the ReadDatabaseGrid, WriteDatabaseGrid, and

MiocateMemoryGrid functions of N2kDB. These functions read, write, and allocate memory
for data associated with grid nodes or elements.

28

GridData is responsible for maintaining grid structure information, such as how many grids
there are and how big each grid is. The information is updated whenever the database is opened
or the grid structure information is saved by writeGridData

If the grid structure is changed after memory for gridded data is allocated, the possible error
is flagged.

GridData retrieves information on the grid structure from the database. The grid structure is
read from and written to the database using the keyword Grid_###. The grid structure is stored in
Fortran common blocks. The first word is the grid number and the following three words give
the dimensions of the grid in the x, y, and z directions.

The number of items in a grid is nx*ny*nz. So the number of words to be
read/written/allocated by ReadDatabaseGrid/WriteDatabaseGrid/AllocateMemoryGrid is
dimension*nx*ny*nz, where dimension is in the argument list.

On request from N2kDBDataModel, GridData makes a memory request from the
MemoryManager, and then a pointer to the MemoryManager's data buffer is passed to the
Database class, which handles the actual reading.

GridData also constructs appropriate MSIO name keys from Nascap-2k data item names.

Table 12. Public methods of GridData class.

Method Functionality

int AllocateMemory (int
&dimension, int *grid, void
•data)

Uses the MemoryManager to allocate memory for data associated with
grid nodes or elements of the specified grid.. The number of words
allocated is the dimension multiplied by the x, y, and z values for the
requested grid number.

int Init (Database *database) Initializes the GridData class. Gets an instance to the MemoryManager.
Queries the database for existing grid inforamtion. Grid numbers must
be sequential. This function must be called prior to performing any grid
operations.

int ReadGridData (int *grid, int
nwords, void *data)

Reads the grid structure of a particular grid. This function does NOT
allocate memory: It is allocated by the caller.

int WriteGridData (int *grid,
int nwords, void *data)

Writes the grid structure of a particular grid.

ReadDatabaseGrid (string
name, int dimension, int grid,
int time, void **data)

Reads data associated with grid nodes or elements of the specified grid.
This function allocates memory via the MemoryManager. The amount
of memory allocated is dimension * grid.x * grid.y * grid.z. This
function interfaces with the Database class. It constructs a Database key
by combining the name and grid number.

ReadDatabaseGrid (string
name, int dimension, int grid,
void **data)

Reads data associated with grid nodes or elements of the specified grid.
This function allocates memory via the MemoryManager. The amount
of memory allocated is dimension * grid.x * grid.y * grid.z. This
function interfaces with the Database class. It constructs a Database key
by combining the name and grid number.

2l>

Table 12. Public methods of GridData class, (cont.)

Method Functionality

WriteDatabaseGrid (string
name, int dimension, int grid,
int time, void *data)

Writes data associated with grid nodes or elements of the specified grid.
This function allocates memory via the MemoryManager. The amount
of memory allocated is dimension * grid.x * grid.y * grid.z. This
function interfaces with the Database class. It constructs a Database key
by combining the name and grid number.

WriteDatabaseGrid (string
name, int dimension, int grid,
void *data)

Writes data associated with grid nodes or elements of the specified grid.
This function allocates memory via the MemoryManager. The amount
of memory allocated is dimension * grid.x * grid.y * grid.z. This
function interfaces with the Database class. It constructs a Database key
by combining the name and grid number.

int DeleteAllGridsO Deletes the grid structure and grid-related information (database keys
MtrxElems_##### and BndSrfcs_#####) from the database. Releases
memory allocated for data associated with grid nodes or elements. Does
not delete gridded data from the database as there is no clear algorithm
for doing this.

int GetCount(int &count) Get the number of grids.

int GetGridNumbers (vector<
int > &gridNums)

Retrieves the grid numbers.

string GetErrorMessage (int
code)

Translates a GridError code to its corresponding string.

int GetLastError () Retrieves the most recent GridError code that was set.

string GetLastErrorMessage () Retrieves the most recent GridError message that was set. If the
function that set the error message also included detailed information
(an extra message appended to the the default message for its code),
that information is returned by this function, as well.

30

Table 13. Selected private member functions of GridData class.

Method Functionality

int AllocateMemory (int dimension,
int gridNum, void **data)

string CreateGridKey (string name, int
gridNum)

Create a database key by appending the grid # to the "name"
key. For example, grid #1 has a grid key of "GRIDOO1", grid
10 has a key of "GRID 010", grid 100 has a key of
"GR1DJ00".

int ExtractGridStructure(void*
gridBuffer, GridStructure& gridData)

Given a buffer of grid data, pull out the structure information.
This is the grid #, X, Y, and Z fields.

GridStructure * FindGrid (int
gridNum)

Find the grid structure associated with this grid number. This
searches the internal record keeping; it does not re-query the
database.

int GetLastGridNum () Get the last/highest grid # we have.

int ReadGridStructure (string fullKey,
int nwords, void **data)

This function reads a grid structure from the database. This can
be used to either retrieve the size of a grid, or the ENTIRE grid
structure information (that would be passed to Fortran). For
example, if the caller (such as this GridData class) only wanted
the grid size, then only the first 4 words would be necessary
(nwords = 4 * wordSize). If the caller (such as Fortran code)
wanted the entire grid structure, the caller would provide
"nwords" and a buffer pointed to by "data" of the appropriate
size.

int ReadDatabaseGridAux (string
name, int gridNum, int dimension,
string &fullKey, int &nwords, void
**data)

Provides most of the functionality of ReadDatabaseGrid.

int UpdateGridStructure () This updates the internal bookkeeping of grid structure
information. Retrieves all grid keys from the Database, and then
calls ReadGridStructure to get the latest structure information
for each grid.

6.2.7 MSIO Class

MSIO has been rewritten in C++ with expanded functionality. The input and output of the
public methods are functionally the same as in the Fortran implementation, except that WritMS
writes the actual length of the new record in the index (even if the new record is shorter) and
checks to see if there is enough space before the next record to write the new data. This approach
allows a record to shorten and expand without necessarily placing the record at the end of the
file.

All name keys are converted to upper case before comparisons.

The code optionally translates MSIO files of the earlier format to the new format.

31

At this time, no provision for calling MSIO directly from Fortran is made. The code is
written so that adding wrappers to accommodate calling from Fortran will be straightforward.

Optional read only access is accommodated, so that N2kDB Tool can be used simultaneously
with Nascap-2k.

The public methods of MSIO are given in Table 14.

Table 14. Public methods of MSIO class.

Method Functionality

int closeMS () Closes the MSIO file and resets some internal flags.

int compactMS () Compresses an MSIO file to remove gaps between data segments.

int convertFastIO (string
oldFname, string
newFname="")

Converts an old FastIO file into a new MSIO file. Examines the data in
the old file and attempts to determine what type of file it is (i.e. name
keys, 16-bit record number, or 32-bit record number).

int deleteMS (string key) Removes a key from an MSIO file.

int deleteMS (int key) Removes a key from an MSIO file.

int deleteMS (string keyl, int
key2)

Removes a key from an MSIO file.

int get Words (int key) Looks up a key in the MSIO file and returns how many words of data
that key has.

int getWords (string key) Looks up a key in the MSIO file and returns how many words of data
that key has.

int getWords (string keyl, int
key2)

Looks up a key in the MSIO file and returns how many words of data
that key has.

int getBytes (int key) Looks up a key in the MSIO file and returns how many bytes of data that
key has.

int getBytes (string key) Looks up a key in the MSIO file and returns how many bytes of data that
key has.

int getBytes (string keyl, int
key2)

Looks up a key in the MSIO file and returns how many bytes of data that
key has.

int getlndexSize () Returns the maximum number of keys that can go into this MSIO file.

string getFilename () Returns the name of this MSIO file.

int getKeys (vector< string >
&keyList)

Retrieves all of the name keys in the MSIO file.

int getKeys (vector< int >
&keyList)

Retrieves all of the number keys in the MSIO file.

32

Table 14. Public methods of MSIO class, (cont.)

Method Functionality

int getKeys (vector< string >
&keyListl, vector< int >
&keyList2) const

Retrieves all of the hybrid keys in the MSIO file. Retrieves all of the
keys in the MSIO file. Each {keyListlfi], keyList2[i]} pair represents a
single name-number key. Therefore, if the following keys were written:.
AAA, 1

AAA, 2
BBB,3

Then keyListl would contain {AAA, AAA, BBB} and keyList2 would
contain {1, 2, 3}.

MSIOType getKeyType ()
const

Returns a flag indicating what type of keys this MSIO file will hold
(MSIO_STRING, MSIOJNT, MSIO_STRING_INT).

string getErrorMessage (int
code)

Translates an error code into its corresponding (default) string.

Int getLastError () Returns the last error code set by an MSIO function.

String getLastErrorMessage

0
Returns the error string associated with the last error code set by an MSIO
function.

Uint64 getLocationBytes
(string key)

Returns the location of the data associated with the key.

Uint64 getLocationBytes
(uiint32 key)

Returns the location of the data associated with the key.

Uint64 getLocationBytes
(string keyl, int key2)

Returns the location of the data associated with the key.

Int getLocation (string key) Returns the location of the data associated with the key.

Int getLocation (int key) Returns the location of the data associated with the key.

Int getLocation (string keyl,
int key2)

Returns the location of the data associated with the key.

Int getNumKeys () Returns the number of items currently in the MSIO file.

Int getSectorSize () Returns the sector size associated with this file.

Int getNameKeySize () Returns the maximum number of characters that can be in a name key.

Int getVersionNumber() Returns the version as a number, to do numerical comparisons of
versions. Examples: 1.0.3 •* 10003 12.1.0 •* 120100 1.2.25 -» 10225.

String getVersionString () Returns the version string.

Bool isFull 0 Returns true if the MSIO file is full.

Int openMS (string fname,
MSIOType type, bool
readOnly=false)

Opens an MSIO file, with the key type specified. If the file is new, this
sets the key type. If the file already exists, then an error is raised if the
file's existing type does not match the "type" parameter. If the file does
not already exist, an empty header is created and stored in memory. The
file will not exist until writeMS is called.

Int openMS (string fname,
bool readOnly=false)

Opens an MSIO file. If the file does not already exist, then the key type
is the default (name).

33

Table 14. Public methods of MSIO class, (cont.)

Method Functionality

int openMS (string fname,
MSIOType type, int
indexSize, bool
readOnly=false)

Opens an MSIO file, with the key type specified. If the file is new, this
sets the key type. If the file already exists, then an error is raised if the
file's existing type does not match the "type" parameter. If the file does
not exist yet, the # of keys in the index is set to indexSize. If the file
exists, this parameter is ignored.

int readMS (string key, void
*dataBuf, int dataBufSize, int
&lengthRead)

Reads a key from an MSIO file; the data buffer MUST be pre-allocated,
so the caller should call getWords() prior to calling readMS().

int readMS (string keyl, int
key2, void *dataBuf, int
dataBufSize, int
&lengthRead)

Reads a key from an MSIO file; the data buffer MUST be pre-allocated,
so the caller should call getWords() prior to calling readMSQ.

int readMS (int key, void
*dataBuf, int dataBufSize, int
&lengthRead)

Reads a key from an MSIO file; the data buffer MUST be pre-allocated,
so the caller should call getWords() prior to calling readMS().

string sayKeyTypeError
(string fname, MSIOType
badType)

Returns an error message indicating that the wrong type of key was used
in accessing the MSIO file, for example, if the user tries to insert a
record number into a name key file. The error message is of this format:
"In function <name>: A database file of type int received a key of type
string".

int writeMS (string key, void
*dataBuf, int nwords)

Writes a key and associated data to an MSIO file.

int writeMS (int key, void
*dataBuf, int nwords)

Writes a key and associated data to an MSIO file.

int writeMS (string keyl, int
key2, void *dataBuf, int
nwords)

Writes a key and associated data to an MSIO file.

The structure of the class is shown in Figure 4.

MSlO::MetaData

rid
MSIO::lndex

J. 'index

MSlO::Header

leader

MSIO::MSlO

Figure 4. Structure of MSIO class.

34

The index segment associates a key with its data by mapping the key to a {location, length}
pair, where location corresponds to the data's location in the file in sectors, and length is the
number of words of data associated with the key. The number of bytes used to specify the
location and the length within the header must be the same as in the code. On different operating
systems and compilers, an "int" or "long" might have a different numbers of bytes. The number
of bytes per word for the data, including the header, is specified in the metadata.). A compiler
dependent typedef statement is used to define a type "unit32," an unsigned integer of the
appropriate length in bytes. The length and location are then specified to be of type uint32. When
the location in the file is needed in bytes, for the actual reading and writing, the type "uint64" is
used.

The Header object is a private property of MSIO, the space for which is allocated by openMS.
The index and MetaData objects are private properties of the Header object. Any properties of
the header (index or MetaData) that are needed by outside code interface with MSIO, rather than
accessing the header directly. Private methods are used for the actual opening, closing, reading,
and writing.

The MSIO class performs reads and writes on data using void pointers. The calling code is
responsible for performing any necessary typecasting. Data reads and writes are performed by
the C stdio.h library functions fread() and fwrite(), respectively. The file pointer is moved using
fseek().

MSIO stores the database keys in memory using a C++ standard library "map" object. Each
unique key is mapped to an index structure. Key lookups are performed using the map object's
find function.

35

Table 15. Public member functions of MSIO:Header class.

Method Functionality

int getMaxSize ()

int getSectorSize () Get the sector size of the MSIO file.

int getSize ()

int getNameKeySize ()

MSIOType getType () const

string getVersionString ()

int getVersionNumber ()

int getWordSize ()

void setlndexSize (int indexSize)

int setType (MSIOType type)

string sayKeyTypeMessage
(MSIOType badType) const

int erase (string key) Remove a key from the index.

int erase (int key) Remove a key from the index.

int erase (NameNumKey key) Remove a key from the index.

int find (const string key, int
&location, int &length)

Find a key in the header.

int find (const int key, int
&location, int &length)

Find a key in the header.

int find (const NameNumKey
key, int &location, int &length)

Find a key in the header.

int getKeys (vector< string >
&keyList) const

Retrieve all of the string keys from the index.

int getKeys (vector< int >
&keyList) const

Retrieve all of the int (record #) keys from the index.

int getKeys (vectoK
NameNumKey > &keyList)
const

Retrieve all of the string-int keys from the index.

int insert (string key, uint64
location, int length)

Inserts a record into the header.

int insert (int key, uint64
location, int length)

int insert (NameNumKey key,
uint64 location, int length)

int update (const string key,
uint64 location, int length)

int update (const int key, uint64
location, int length)

36

Table 15. Public member functions of MSIO:Header class, (cont.)

Method Functionality

int update (const NameNumKey
key, uint64 location, int length)

void clear () Erase the data in a header object.

int create (MSIOType type, int
indexSize=0)

Create a new MSIO file's header. This just initializes data structures;
it does not write it to disk.

int findLength (const uint64
location)

For a given data address in bytes, retrieve its size in words.

uint64 findNextLocation (const
uint64 location)

Find the next EMPTY data address AFTER this one. If the location
passed in to this function happens to be empty, it still returns the
NEXT empty location AFTER this one.

int getSeekAmount ()

bool isFull 0

int read (FILE *fp) Reads the header from MSIO the open file pointed to by fp.

int updateLocation (const uint64
oldLocation, const uint64
newLocation)

This updates a key's location. This searches the header for a key at
oldLocation and then updates the record's location to newLocation.

int write (FILE *fp) Write a header into the open file pointed to by fp. SIDE EFFECTS:
The file pointer is moved. This function seeks to the beginning of the
file prior to writing the header, and then leaves the pointer at the file
position after the header.

static MSIOType readType (std)

static int sayDefaultlndexSize () Usage: int i = Header: :sayDefaultIndexSize();.

static int
sayDefaultNameKeySize ()

The default name-key size if a new MSIO file were created. Usage:
int i = Header::sayDefaultNameKeySize();.

static string
sayDefaultVersionString ()

The version string that would be generated if a new MSIO file were
created. Usage: string s = Header: :sayDefaultVersionString();.

static string sayTypeString
(MSIOType type)

Converts an MSIOType into its corresponding string (e.g. "string",
"int"). Usage: string s = Header: :sayTypeString(type);.

6.2.7.1 MSIO Files

New MSIO files consist of a header segment and a data segment. The header segment
consists of metadata followed by an index.

The metadata is 80 bytes (20 4-byte words) and contains the information in Table 16. If any
additional data about the database, such as the byte order, would be useful in the future, it can be
added using the reserved space in the metadata record.

37

Table 16. Content of MSIO metadata record.

What Size Description

Version
String

12
characters
(12 bytes)

Format: MSIOXX.YY.ZZ, where XX, YY, and ZZ are digits.

Type of keys
in file

1 character
(1 byte)

Indicates what type of keys are in the index. Available values are: "1" for
name key file, "2" for number key file, and "3" for a hybrid key file.

Size of name
keys

1 int
(4 bytes)

Length of name keys in bytes (characters).

Index size 1 int
(4 bytes)

Maximum number of keys that can be stored in this file.

Sector size 1 int
(4 bytes)

Block size of data sectors in bytes.

Word size 1 character
(1 byte)

Word/bit size of data, e.g. a "word size" of 4 means it is a 32-bit file.

Reserved 54 bytes For future use.

N2kDB files have a sector size of 512 bytes.

The index describes where in the file each record is located. The index entry for each record
consists of a key, the location (in sectors from the beginning of the file) at which the data starts,
and the length of the record (in words). There are three types of keys. For name key files, the key
is the ASCII representation of a string, which must be a whole number of words long (multiple
of 4 characters for 32 bit words). For number key files, the key is an unsigned integer. For hybrid
key files, the key is the ASCII representation of a string followed by an unsigned integer. For
hybrid key files, the length of the key is the number words in the string plus one for the integer.
For keys of length length, the key starts at word l+(length+2)*i, where / is the length of the
metadata and i is an index that starts at "0". The location and length are in the words
immediately following.

6.3 N2kDB Tool

N2kDB Tool provides a user interface into (1) a Nascap-2k database, (2) an MSIO 2.0 file,
or (3) an MSIO file of the earlier format.

If N2kDB Tool cannot open the database as read/write, it opens it as read-only, so that the
database can be examined at the same time as it is open with Nascap-2k. With some operating
systems and compilers, both N2kDB Tool and Nascap-2k can open the same database at the
same time as read-write.

If a Nascap-2k database is opened, the content of all files of the database is available. On
opening, the file metadata and the index are displayed.

38

When the user specifies the data item name, data format, and start and end locations, N2kDB
Tool creates a text window in which the data is displayed. It is possible to copy the contents of this
window to the clipboard. When the database is opened in read/write mode, the user is able to edit
the contents of the window. There is a save button, which when clicked, saves the contents of the
window into the location from which it came. If the data in the window is larger than the specified
location, the data is written at the end of the file, as is normal for MSIO. If the data in the window
is shorter than the specified location, the tail end of the data on the disk is not overwritten.

6.3.1 User Interface

Two versions of N2kDB Tool have been built. The simplest reads from and writes to the
command line. The type of file to be read and the filename are specified using keyword input.
The data to be read and its format are specified using keyword input. No provision is made for
writing to the database. The files of N2kDB are linked in to form a single executable.

The other version of N2kDB Tool has a Java user interface to an underlying C++
dynamically linked library that is statically linked to the underlying classes within N2kDB.
There are two open commands, one for a Nascap-2k database and one for a single MSIO file.
There are two screens. The first screen shows the index and the second the data. The screen that
shows the index appears slightly differently depending on if a Nascap-2k database or a single
MSIO file is opened. The screens are shown in Figure 5, Figure 6, and Figure 7. The data
window allows for copy and paste.

39

H . n x
He

MSJO «e: C: SpacePhysics *iascap2k H2kDBTest bin «2kDBTest MOB
Version: MSJOOO.00.02
Index size: 23
Sector size: 512

Keyword Start (sectors) Length (words)

DBUBJMTMSGRU 471 27

DBUBJMTALENOM 472 27

D6UB_DATMMMES 586 162

DB,VERSION 469 3

GELMjGS.001 591 4845

GELM_GIS_002 781 2197

GBijCURRENTTABLE 871 15001

GENJH.UXTABLE 869 202

GBi_OBJECTSIZE 590 7

GMOD_POT_001 629 19380

GHOOJPOTJM2 799 8788

GRDJMM 588 20

GRD_0O2 589 20

MATERIALS 473 316

NOOJPOSITION 581 168

POTjCONDUCTOR 585 108

SRFJkTTRBUTE 576 540

SRF.CENTROD 478 162

SRF_£LEMENT 476 216

SRFJTCHARGEDEN 868 108

SRFJMRMAL 480 162

SRF_POTENTIAL 583 108

SRFJPOTHXED 584 54

Figure 5. Screen that appears when an MSIO file is opened.

40

P N?kDBTool

Nascap 2k Database: C:\SpacePtyMCtMascap2kM2kOBTest\bkiW2kDBTast
2ties: C:SpacePhysic**tascap2k#t2kDBTest'bin«2kDBTest.NDBC:SpacePhysics«ascap2kN2kDBTest*in»(2kDBTest.NTM

Keyword Length (words)

D8UB_DATAISGR» 27

DBUBJ)ATALEND1

DBUB.DATANAMES

GELM_GIS_001

GELM_GIS 002

27

162
4845

2197

GEN_CURR£NTTABLE

GEN_FLUXTABLE

GENOBJECTSIZE

GNOD_POT_001

MATERIALS
i

15001

202

19380

8788

20

20

316
NOO POSITION

POT CONDUCTOR
168

108
SRF.ATTRHJTE 540
SRF CENTROD 162
SRFJBLEMENT

SRF_FOCHARGEDEN
216

108
SRF.NORMAL 162

SRF_POTENTlAL 108
SRF POTFIXED 54

GNOO_POT_001 Timestep 1 19380
GNOD_POT_001 Timestep 2

GNOD_POT_001 Tiniestep 3
19380

19380
GNOO_POT_002 Timestep 1 8788

i

GNOD_POT_002 Tim—tap 2

GNOD_POT_002 Timestep 3

POT_HAS_SURF Timestep 0

SRFJOTENTIAl Timestep 1

SRF_POTENTIAl Timestep;

SRF .POTENTIAL Tim—tap 3

8788

8788

8788

108

108

108

Figure 6. Screen that appears when a Nascap-2k database is opened

41

R NOD__POSITION - Ilnflj

NOD_POSITION 168 words Rea. Start End 166 Save

2.0
3.0
4.0
2.0
3.6666667461395264
4.0
2.6666667461395264
3.6666667461395264
4.0
2.6666667461395264
3.0
4.0
3.3333332538604736
3.6666667461395264
4.0
3.3333332538604736
3.0
4.0
4.0
3.6666667461395264
4.0
4.0
3.0
4.0
2.0
4.333333492279053
4.0
2.6666667461395264
4.333333492279053
4.0

Figure 7. Screen that appears when button on Figure 5 or Figure 6 is clicked.

6.3.2 Code Structure

N2kDB Tool exists in two forms, a single executable and a combination of a Java user
interface and a dynamically linked library. The single executable, N2kDBToolConsole, consists
of a driver and a statically linked library. The dynamically linked library consists of JNI (Java
Native Interface) wrappers to the same statically linked library. Both are linked with the
underlying statically linked libraries that comprise N2kDB.

6.3.2.1 N2kDB Tool library

The library functions used by both user interfaces are given in Table 17.

42

Table 17. N2kDB Tool Library.

Method Functionality

void OpenMSIOFile(string filename,
vector<string>& nameKeys,
vector<int>& numberKeys,
vector<int>& recordLength,
vector<int>& locationlnFile,
MSIO::MSIO& file,
bool& opened,
String& errmsg)

Opens the MSIO file and initializes the
vectors containing the keys in the file and
their sizes. The first argument is the file
name and the rest are return values. The
length of the vectors is determined by the
type of file (name, number, or
name/number pair)
Note: An MSIO file will only have one
type of key, so only one of the lengths
will be nonzero.
The record lengths are specified in words
and the locations are specified in sectors.
The MSIO object is returned for
subsequent file access.
Opened is set to true or false, depending
if the requested file could be accessed.
Errmsg is set to a message stating why
the MSIO file couldn't be opened.

void OpenN2kDBDataBase(string databaseName,
vector<string>& nameKeys,
vector<int>& nameKeyRecordLength
vector<string>& namePartOfNameNumberKeys,
vector<int>& numPartOfNameNumberKeys,
vector<int>& nameNumKeyrRecordLength
N2kDBDataModel& dataModel,
bool& opened,
string& errmsg)

Opens the database and returns the list of
keys in the database and their sizes. The
first argument is the database name and
the rest are return values.
The record lengths are specified in
words.
The dataModel object is returned for
subsequent database access.
Opened is set to true or false, depending
if the requested file could be accessed.
Errmsg is set to a message stating why
the MSIO file couldn't be opened.

bool CheckIsDataBase(string dbName) Returns true if the string is possibly the
name of an N2kDB database.

void N2kDBGetData(N2kDBDataModel&
dataModel, string nameKey, int numberKey, int
nwords, void* databuf)

Places the first nwords words from the
record identified by nameKey, and
optionally numberKey, at the memory
location databuf.

void N2kDBGetData(MSIO::MSIO& file, string
nameKey, int numberKey, int nwords, void* databuf)

Places the first nwords words from the
record identified by nameKey, and
optionally numberKey, at the memory
location databuf.

void N2kDBPutData(N2kDBDataModel&
dataModel, string nameKey, int numberKey, int
nwords, void* databuf)

Saves nwords words to the record
identified by nameKey, and optionally
numberKey, starting from the memory
location databuf.

43

Table 17. N2kDB Tool Library, (cont.)

Method Functionality

void N2kDBPutData(MSIO::MSIO& file, string
nameKey, int numberKey, int nwords, void* databuf)

Saves nwords words to the record
identified by nameKey, and optionally
numberKey, starting from the memory
location databuf.

void getNumMSIOKeys(string filename, int&
numNameKeys, int& numNumberKeys, int&
numNameNumberKeys)

Opens an MSIO file and returns the
number of keys.

void getNumDBKeys(string N2kDBprefix, int&
numNameKeys, int& numNamelntKeys)

Opens the N2kDB database and returns
the number of keys.

void getDBInfo(string N2kDBprefix, string&
N2kDBfilelist, string& N2kDBVersion)

Opens an N2kDB database and returns a
string containing the names of the files
comprising the database and the database
version number.

void getMSIOInfo(string filename, string& version,
int& sectorSize)

Opens an MSIO file and returns the
version number and the sector size.

6.3.2.2 N2kDB Tool Java interface

The Java interface has four classes: N2kDBTooi, DataPanel, ButtonCoiumn, and
N2kDBTabieModel. N2kDBTooi is an extension of the JFrame class and is the entry point. Its
methods are given in Table 18. The native methods it uses are given in Table 19.

N2kDBTableModel generates the tables shown in Figure 5 and Figure 6. ButtonCoiumn turns
a column of the table into clickable buttons. DataPanel is an extention of the JFrame class that
displays the screen shown in Figure 7. Its methods are shown in Table 20.

44

Table 18. Methods of N2kDB Tool class of N2kDB Tool Java interface.

Method Name and
Arguments

void msioIndex() Draws the screen showing all keywords of an MSIO file. The keywords
are indexed starting with 0 on the first line

• display[] - Array of JButtons. Each button brings up
the element info screen for the appropriate keyword. Each
button has its own unique action command with the following
syntax: keylndex, keyType, databaselndex. (For MSIO files,
databaselndex = -1).

• keywordf] - String array displaying the keyword name.

• locationlnFilef] - array of ints indicating start (sectors).

• skSize[], ikSize[], sikSize[] - array of ints indicating
number of elements (words) associated with each keyword.
There are three different arrays corresponding to the three
types of keyword: skSize for name only keys, ikSize for
number only keys, and sikSize for hybrid keys

void dblndex() Draws the screen of all keywords in a database. The keywords are
indexed starting with 0 on the first line of the grid. Since a database is
made up of individual MSIO files, n2klndex opens all MSIO files in
the database and adds their keywords to the grid in the sequence in
which they were read. Each keyword is given a keylndex and a
databaselndex. keylndex starts from 0 and runs up to the number of
keys in the MSIO file for each MSIO file, databaselndex starts from 0
and runs up to the number of keys in the entire database.

• display[] - Array of JButtons. Each button brings up
the element info screen for the appropriate keyword. Each
button has its own unique action command with the following
syntax: keylndex, keyType, databaselndex.

• keywordf] - String array displaying the keyword name.

• locationmFile[] - array of longs indicating start
(sectors).

skSize[], ikSizef], sikSize[] - array of ints indicating number of
elements (words) associated with each keyword. There are three
different arrays corresponding to the three types of keyword: skSize for
name only keys, ikSize for number only keys, and sikSize for hybrid
keys.

void initArrays() Uses the info from getMSIOInfo and getDBInfo to create the space that
will be needed when calling openN2k and openMSIO.

void initData() Takes the data returned from openN2k and openMSIO and puts it in
the "data" object. The data object is passed to the N2kDBTableModel
constructor to create the table that displays database/MSIO file
information.

boolean isDBQ Returns the value of the flag specifying whether a database or MSIO
file is open.

45

Table 18. Methods of N2kDB Tool class of N2kDB Tool Java interface, (cont.)

Method Name and
Arguments

int getIKSize(int i) Returns the number of number keys specified by i.

int getSKSize(int i) Returns the number of name keys specified by i.

int getSDCSize(int i) Returns the number of hybrid keys specified by i.

String getNameKeyList(int i) Returns the name of the name key specified by i.

int getNumberKeyList(int i) Returns the number of the number key specified by i.

String
getNameNameNumKeys(int i)

Returns the name of the hybrid key specified by i.

int getNumNameNumKeys(int
i)

Returns the number of the hybrid key specified by i.

actionPerformed(ActionEvent
evt)

Responds to user selections.

Table 19. Native methods used by N2kDB Tool Java interface.

Method Functionality

native getNumMSIOKeys(String fileName, int[]
numNameKeys, int[] numNumberKeys, int[]
numNameNumberKeys)

Gets the number of name-only keys, number-only
keys, and hybrid keys for the MSIO file specified
by fileName.
Note: An MSIO file will only have one type of key,
so only one of these should be nonzero.

native getMSIOInfo(String fileName, String[]
version, int[] sectorSize)

Gets MSIO version and sector size for file specified
by fileName.
version[] and sectorSize[] have length 1. This is a
JNI workaround.

native openMSIO(String fileName, Stringf]
nameKeyList, int[] namekeyRecordLength, int[]
numberKeyList, int[] numKeyRecordLength,
long[] locationlnFile, boolean opened, String
errmsg)

Reads keys (name, number, hybrid) and number of
words for each key from the MSIO file specified by
fileName into Java GUI code. The method writes to
the parameters it is passed.

native getNumDBKeys(String fileName, int[]
numNameKeys, int[] numNameNumberKeys[])

Gets the number of name keys and hybrid keys in
the database specified by fileName.

native getDBInfo(String fileName, String
dbFileNames[], String dbVersion[])

Gets the names of the files in the database specified
by fileName. Gets the version of the database
specified by fileName.

native openN2k(String fileName, Stringf]
nameKeyList, int[] nameKeyRecordLength,
String[] namePartOfNameNumberKeys, int[]
numPartOfNameNumberKeys, int[]
numNameKeyRecordLength, boolean opened,
String errmsg)

Reads keys (name, number, hybrid) and number of
words for each key from Nascap-2k database
specified by N2kDBFile into Java GUI code. The
method writes to the parameters it is passed.

46

Table 19. Native methods used by N2kDB Tool Java interface, (cont.)

Method Functionality

native isDatabase(String fileName) Returns true if the user requested a Nascap-2k
database, and false if the user opened an MSIO file
(*.NDB, *.NTM)

native readDatabase(boolean isDB, String name,
int number, int size, int[] idata)
native readDatabase(boolean isDB, String name,
int number, int size, char[] cdata)
native readDatabase(boolean isDB, String name,
int number, int size, doublef] data)
native writeDatabase(boolean isDB, String name,
int number, int size, int[] idata)
native writeDatabase(boolean isDB, String name,
int number, int size, char[] cdata)
native writeDatabase(boolean isDB, String name,
int number, int size, doublef] data)

Native methods (N2kDBTool.dll)
Reads or writes the elements (words) for the
selected key (Note: the selected key is indicated by
keylndex). read/writeDatabase needs to be passed
appropriate values for key name, number, and size
depending on the key type, name = key names,
number = key numbers, size = number of elements
(words) for each key.

• isDB: identifies the input file as a
database or single MSIO file.

• name should be an element of
nameKeyListf] for name-only keys, -1 for
number-only keys, and an element of
strNameIntKeys[] for hybrid keys

• number should be null for name-
only keys, an element of numberKeyListf]
for number-only keys, and an element of
intNameIntKeys[] for hybrid keys

• size should be an element of
skSize[] for name-only keys, an element of
ikSize[] for number-only keys, and an
element of sikSize[] for hybrid keys

• data[], idata[], and cdata[] are
arrays for "Real" "Integer" and "ASCII"
elements, respectively. Note: the number of
ASCII elements needs to be 4*size. This is
handled manually when the array is
declared, when "ASCII" is selected from
the combo box, and when read/write
database methods are called.

47

Table 20. Methods of Java DataPanel class of N2kDB Tool Java interface.

Method Functionality

displayKeyData() Obtains and displays all the data on the screen.

saveKeyData() Saves data in text field.

setText(String str) Sets the data displayed in the text field.

actionPerformed(ActionEvent evt) Responds to user selections (Data format and Display
and Save buttons).

propertyChange(PropertyChangeEvent evt) Responds to changes in the Start and End fields

JTextArea getElementTextArea() Returns the text area.

6.3.2.3 N2kDB Tool Console User Interface

After querying the user for the name of the database or file, the code opens the database or
file, displays general information about the database or file, and lists the keys. The code then
enters a loop that queries the user for the key, displays the record associated with the specified
key, and then repeats.

7 TESTING

7.1 Testing of Each Class

Before each class was written one or more testing codes (unit tests) that call all of the public
methods under all reasonable circumstances were written. The class must pass the test anew each
time it is modified. This approach required a bottom up construction of the new classes. We did
not use Visual Studio 8's built in unit tests, in order to maintain portability.

7.1.1 Unit Test Code Guidelines

The following guidelines were followed when writing unit tests.

o Test non-trivial public methods and properties (e.g. don't test getter/setter methods).

o Test at least one success case. Test the most typical use of the class/method.

o Check boundary conditions.

o Use negative tests to be sure the code responds to error conditions appropriately. Verify that
the code behaves appropriately when it receives invalid or unexpected input values. Verify
that it returns errors or throws exceptions when it should.

o Whenever a bug is fixed, add unit tests to verify that the behavior remains fixed.

48

o Write tests that combine different code modules to implement some of the more complex
behaviors of the application.

o Write unit tests that will continue to function as the code changes.

o Reuse creation, manipulation, and assertion code when possible. Don't create instances of
classes directly inside a unit test.

o Avoid dependencies between tests. A test will be able to stand on its own. It will not rely on
any other test, nor will it depend on tests being run in a specific order. Someone else will be
able to take all the tests, run all or just some of them, in any order, and know that they will
always behave the same.

o Unit tests will be easy to run in an automated fashion.

7.1.2 MSIO Unit Tests

MSIOTest is an application that tests functionality of the MSIO class. It is maintained under
version control with the class source code. The MSIOTest application can be run in one of two
ways:

Mode #1: A specific test case can be listed as a command line argument, e.g.:

MSIOTest.exe 15

MSIOTest.exe 17

MSIOTest.exe 20

Mode #2: If no argument provided, the user is shown a menu of available tests and is
prompted to specify one.

In general, each test case creates its own "testXX.bin" MSIO file, where XX corresponds to
the name (number) of the test. The one exception is test #23, which converts an old fastio file.
fort.20, into a new MSIO file. The test file created by test #23 is called fort_new.20. *NOTE*
that fort.20 is not currently part of the project's version control, so it must be manually placed in
the current working directory.

While the tests are identified by integers, the numbers are not consecutive.

7.1.2.1 Test 4

Creates, writes to, and reads from and name key file. Creates a key with character, float, and
integer data, writes the key to the file, and then reads the key from the file. Performs byte by byte
comparison and data comparison of data written to, and read from, the key.

7.1.2.2 Test 5

Tests that read only traits are handled and preserved correctly.

49

7.1.2.3 Test 6

Writes a name key to a file, prints the seek location. Reads the data from the file and
compares it to written data.

7.1.2.4 Test 7

Creates, writes to, and reads from name key file. Creates 2 keys, one with int data and one
with double data.

7.1.2.5 Test 11

Tests changing the amount of data associated with a key. First, two records are written. Then,
record #2, at the end of the file becomes larger, but does not need to move (as it's at the end of
the file). The record at the beginning of the file becomes smaller and therefore does not have to
move. This test can't determine whether or not the data elements actually move or not, but as
long as we can re-read the keys, then the tests passes.

7.1.2.6 Test 12

In this test, records will look like:

| record #1 | record #2 | record #3 |

Record #2 will increase in size and move to the end. Records then look like

| record #1 | (record #3 | record #2 |

Record #1 will increase in size, but since record #2 was moved, it will not need to move.
Final result looks like:

| record 1 | | record 3 | record 2 |

This test can't determine whether or not the data elements actually move or not, but as long
as we can re-read the keys, then the tests passes.

7.1.2.7 Test 13

Prints some sizeof values.

7.1.2.8 Test 15

This is the same as testl2, except that compactMS is called. This test can't determine
whether or not the data elements actually move or not, but as long as we can re-read the keys,
then the tests passes.

50

7.1.2.9 Test 15b

This is the same as test 15, but tests with dead space occurring as the result of a deleted
record.

7.1.2.10 Test 16

Simple test of listing keys and then erasing one.

7.1.2.11 Test 17

Simple test of writing and re-reading hybrid keys. The keys are

pair#l: {dkey, 12340}

pair #2: {ikey, 56789}

pair #3: {ikey, 6789}

For pairs 2 and 3, the string portions are the same, but the int portions are different, so they
are treated as distinct keys.

7.1.2.12 Test 18

Tests search functionality on int keys. Keys numbered 1-9 are placed into the file.

Step 1: Find all keys >= 3.

Step 2: Append "<= 7" to the search, so that we find all keys between 3 and 7.

Step 3: Append "!= 6" to the search, so that we find all keys between 3 and 7 but not 6.

7.1.2.13 Test 19

Two tests on string-int keys.

Test #1: The string-int keys "dkey" and "ikey" are inserted, and then we search for name
keys that contain "ik."

Test #2: One of the string-int keys has an int key > 10000, and the other has a key < 10000.
The second search appends looking for ints > 10000 to the existing search, so we only obtain
keys whose string part contain "ik" and whose int part is > 10000.

7.1.2.14 Test 23

Convert an old FastIO file, fort.20, into the new MSIO format. In order to truly test success
on this test case, we'd need to hard-code the keys in the fort.20 file and check that all of those
keys (and ONLY those keys) are in the converted file. Currently, this will return success simply

51

if the convertFastIO routine returns no error AND any kind of key is read from the converted
file.

7.1.2.15 Test 32

Confirms that a warning is generated when a buffer passed to readMS is smaller than the
record's length. Note that the number of words actually read is also returned.

7.1.3 N2kDBDataModel Tests

N2kDBDataModelTest is an application that tests some functionality of the
N2kDBDataModei class. It is maintained under version control with the class source code.

7.1.3.1 Test#l

A simple test case that is an example of how to interface with N2kDBDataModel. It ensures
that the appropriate database files are created when keys are written and that the data read from
these keys matches the data written to them.

7.1.3.2 Test #2

Tests opening an existing database by creating MSIO files directly and then calling
OpenDatabase.

7.1.3.3 Test #3

Creates a new database, writes keys and data, and closes the database. Confirms that the keys
and data are correctly re-read from the database.

7.1.3.4 Test #4

Creates a new database containing particle keys. As the name of a particle key indicates
which particle file it is written into, the MSIO files are then accessed directly to confirm that the
particle keys were placed into the correct files.

7.1.3.5 Test #5

Tests Database's ReadDatabase function

7.1.3.6 Test #6

Creates grid structure information via the Database's interface, and confirms that the
GridData class correctly reads the information.

7.1.3.7 Test #7

Confirms that ReadDatabaseGrid correctly retrieves grid structure information, calls the
MemoryManager and then reads data via calls to Database's ReadDatabase.

52

7.1.3.8 Test #8

Confirms that the DeleteAllGrids function deletes the correct keys.

7.1.3.9 Test #9

Tests that the GridData function WriteGridData correctly writes grid structure information.

7.1.3.10 Test #10

Confirms that when a grid is "", the GridData class will not write new information.

7.1.3.11 Test #11

Like Test #10, confirms that when a grid is "in use", the GridData class will not write new
information

7.1.3.12 Test #12

Confirms that, when GridData is initalized, missing a grid number will raise an error.

7.1.3.13 Test #13

Tests N2kDBDataModel's WriteDatabaseGrid function

7.1.3.14 Test #14

Confirms that GridData will raise an error if grid numbers are written out of sequence. For
example, attempting to write grid numbers 1,2,4 will raise an error when grid 4 is written, since
there is no grid 3.

7.1.3.15 Test #15

Tests N2kDBDataModel's ReadGridData function.

7.1.3.16 Test #16

Tests N2kDBDataModel's ReadDatabaseGrid function.

7.1.3.17 Test #17

Tests N2kDBDataModel's DeleteAllGrids function.

7.1.3.18 Test #18

Tests N2kDBDataModel's WriteGridData function.

53

7.1.3.19 Test #19

Tests N2kDBDataModel's WriteDatabaseGrid function.

7.1.3.20 Test #20

Confirms that an error is written when calling WriteDatabaseGrid for a grid number whose
structure is not in the database.

7.1.3.21 Test #21

Confirms that a error is raised if an existing database does not have a general database file
(.NDB).

7.1.3.22 Test #22

Confirms that an error is raised if a general database file (.NDB) does not have a database
version string.

7.1.3.23 Test #23

Tests that an error is generated if MSIO files are incompatible with each other.

7.1.3.24 Test #24

Tests that the database operates correctly when opened in read only mode.

7.1.3.25 Test #25

Tests reading the time history for a key. Does not check that the key has a time history.

7.1.3.26 Test #26

Verify functionality of ReadltemData, WriteltemData, Getltems, and Deleteltem functions
by creating material records, reading them using both ReadltemlData and ReadDatabase,
deleting records, and subsequently adding records, using names that are an even number of
words, that are not, that have spaces, and that are similar to each other.

7.2 Consistency with Specification

We have reviewed this document and Software Requirements Specification for Nascap-2k
Database and Memory Manager simultaneously and verified that the design satisfies the
specification. The manner in which each paragraph of the specification is satisfied is included as
Appendix A to this document.

54

8 INTERMEDIATE IMPLEMENTATION OF N2KDB

Nascap-2k 2>2 uses calls to four subroutines, dbdata, dbinfo, dbf ile, and buf f io to
perform all database access and memory management. The initial implementation of the new
database and memory management system is transparent to Nascap-2k above the level of the
database calls, dbdata, dbinfo, dbf ile, and buf f io. These calls were left in the code, as is, but,
instead of calling the old database code, function as wrappers to the new code. This simplest
implementation and minimum modification of Nascap-2k code has been implemented in order to
move to the new database with the least disruption. This version ofNascap-2k is known as
Nascap-2k 4.0.#, where # refers to successive versions with the new capabilities of N2kDB more
fully integrated. The modifications to Nascap-2k needed to use the full capabilities of N2kDB
will be made over the next few months.

The Fortran subroutines dbdata, dbf ile, dbinfo all have the same structure. They each
consist of calls to three subroutines. The first of these defines constants and handles
initialization, the second reads the keyword input and sets the appropriate variables and flags,
and the third performs the requested actions. For the interim implementation, the first two of
these subroutines were left in place and the third, action subroutine was replaced with a
subroutine with the same name that returns pointers to the same locations while using the new
database software underneath.

A new version of buf f io was written that takes the same keyword list argument presently
used and returns pointers to the same locations while using the new database software
underneath.

In some cases, this temporary structure leads to complicated temporary code. When this is
the case, a direct call to N2kDB is used.

Before the intermediate implementation of N2kDB into Nascap-2k, the following changes
were made:

• The data item names were replaced with the new names,

• All data initialization that was handled by database commands were replaced by s3set
and s3zero commands.

• The grid data in common blocks was reorganized. The Fortran common blocks
containing the grid structure information order the information in three different ways.
The decision was made to store the data in the following manner. N2kDyn and Scanner
reformat the data on write and read respectively

IGrid, Nx, Ny, Nz, Iparen, MsRati, MIRati, XmLocl, ParOri(3), PriOri(3)

IGrid Grid number
Nx,Ny,Nz # of nodes along grid edges, includes endpoints
IParen # of parent grid, =0 if this is primary grid
MsRati Ratio of child/parent mesh units

55

M1 Rati Ratio of child/primary mesh units
XmLocl Mesh size of this grid
ParOri(3) Origin of this grid in parent grid units
PriOri(3) Origin of this grid in primary grid units

The capabilities of the intermediate implementation are as follows:

• Calls to dbfile replaced with OpenDatabase and CloseDatabase.

• Calls to dbinfo(Inquire GRID) replaced with calls to ReadGridData

• Call to dbinfo(Define GRID) replaced with calls to DeleteAllGrids and WriteGridData

• Calls to dbinfo(Inquire Problem) replaced with calls to GetCount("Grid", ngrids) and
ReadGridData as appropriate.

• New version of buffio that uses N2kDB rather than dbdata of DBLIB.

• New version of dtactn that stores the length of the data items in a way that can be
retrieved by buffio and ddactn. Other functionality of dtactn is not needed.

• New version of ddactn that uses N2kDB rather than DBLIB.

• N2kDB function GetMaterials is known as GetMaterialsNew.

• The "MatrxElems" and "BndSrfcs" data items are saved directly with N2kDB.

56

REFERENCES

1 M.J. Mandell, T. Luu, J. Lilley, Analysis of Dynamical Plasma Interactions with High-
Voltage Spacecraft, Final Report - Volume II, PL-TR-92-2248 (II), 1992.

2 V.A. Davis, M.J. Mandell, S.L. Huston, R.A. Kuharski, B.M. Gardner, Plasma Interactions
with Spacecraft, Scientific Report No. 1, AFRL-VS-HA-TR-2007-1062, 2007.

3 S. Liang, Java Native Interface: Programmer's Guide and Specification, Prentice Hall, 1999.

4 http://en.wikipedia.orR/wiki/Java_Native_Interface.

5 http://iava.sun.eom/j2se/l.4.2/docs/guide/ini/.

6 http://www.ibm.com/developerworks/edu/j-dw-javajni-i.html.

57

APPENDIX A. NASCAP-2K 3.2 STRUCTURE

Nascap-2k 3.2 (the last version of Nascap-2k to use the old database) is composed of the
several components that are listed in Table Al. The relationships between them are shown in
Figure Al. The graphical user interface communicates with the computational modules. The
computational modules read and write computed data to the database files. The lapack
dynamically linked library solves matrix equations and Xerces understands XML data structures.
The DynaBase dynamically linked library is a Fortran library and reads quantities from and
writes quantities to the database that are needed or generated by the non-Fortran components of
Nascap-2k (BEMDLL or the user interface). DynaBase was needed because the Nascap-2k 3.2
database code is Fortran-centric, so that C++ and Java code cannot call it directly.

All communication with the database is handled by DBLib, which also handles memory
management. DBLib is a static library written in Fortran with the database reads and writes in C.

Figure Al. Nascap-2k 3.2 structure of Main components.

59

Table Al. Major components of Nascap-2k 3.2.

Component Nature of component

GUI jar file written in Java

BEMDLL dynamically linked library written in C++

Lapack dynamically linked library written in C++

Xerces (LINUX only) dynamically linked library

DynaBase dynamically linked library written in Fortran with C++ wrapper

N2kDyn dynamically linked library written in Fortran with C++ wrapper

Potent dynamically linked library written in Fortran with C++ wrapper

PartGen dynamically linked library written in Fortran with C++ wrapper

Tracker dynamically linked library written in Fortran with C++ wrapper

Scanner dynamically linked library written in Fortran with C++ wrapper

Database files Multiple files

DBLib Library written in Fortran with C low level subroutines

A.1 DBLib

DBLib is the library which provides for all database access in Nascap-2k. It does this
through three subroutines: dbf ile, dbdata, and dbinf o. The input to each of these subroutines
is a string, which consists of keywords and arguments that instruct the underlying code what is to
be done. The first subroutine, dbf ile, handles opening and closing of the database. The third
subroutine, dbinf o, handles creation of, and inquiries about, the data structures in the database.
The subroutine dbdata handles reading from and writing to the database. If the keyword HERE
appears in the input string to dbdata, the data is written to or read from the specified location in
memory provided as an argument to the HERE keyword. When dbdata is used to read data from
the database into memory, the memory location at which it is placed is always returned at the
location idbof f (l), which is in the common block /odbbcm/ in the include file odbdata.h.

A. 1.1 Buffio

The subroutine buffio (in dynalib) functions as a wrapper for dbdata. It is used for reading
up to four gridded items for a single grid at once. Generally, buffio is used, rather than dbdata
directly, for gridded data.

A. 1.2 Dbdata

The subroutine dbdata (string command) allocates and releases memory, reads and writes
from disk files to memory, and initializes data values in memory (data handling). The argument
to dbdata is a keyword-oriented input string like "read data=pot_20_node grid=2" and output
from the subroutine is returned in a common block in the include file odbdata.h as described
above.

60

If there is an error reading data from the database, then the logical flag ldberr is set to true,
and the error message, cdberr is set to reflect the error condition. Both of these variables are in
common blocks in odbdata.h. These conditions are:

• Data type not defined, no action taken

• Data not written, read zeroes instead

This structure works in the following manner. After calling dbdata to request data from the
database, the calling routine checks the error flag, and then reports that, for the data requested, it
was not defined or set to zero if there was a problem.

A.1.3 Dbinfo

The subroutine dbinfo (string command) defines and determines the data (data about the
data, or metadata). The argument to dbinfo is a keyword oriented input string like "DEFINE
Data=pot_8_node element_type=Node_8 dimension=scalar value=real set_value=0" and the
output from the subroutine is returned in a common block in the include file odbinfo.h.

If there is an error defining and determining the data from the database, then the logical flag
ldierr is set to true, and the error message, cdierr is set to reflect the error condition. The
variables ldierr and cdierr are in the common block in odbinfo.h. Currently cdierr is never
set, and ldierr is always true.

A.1.4 Dbfile

The subroutine dbfile (string command) is an interface subroutine for file handling. It
defines the files (file manipulation) and their contents. The argument to dbfile is a keyword
oriented input string like "Open Prefix=Dmsp STATUS prefix=Data_set_l
PREFIX=Data_set_2" and the output from the subroutine is returned in a common block in the
include file odbfile.h.

If there is an error during this file handling, then the logical flag ldf err is set to true, and the
error message, cdf err is set to reflect the error condition. The variable ldf err is in the common
block in odbfile.h. The only use is the generation of the message "Could not find anything
familiar in input."

A.1.5 DbLib Errors

Additionally, other errors are returned directly by the subroutines in DbLib to report when
there are problems in database access or memory management. These error messages include the
routine name and the problem encountered. The errors appear in Table A2.

The underlying MSIO code generates the error messages given in Table A3. (Note that
MSIO identifies files by their logical unit numbers, lun.)

61

Table A2. Error messages reported by DbLib subroutines.

Failure to open a database file or database not opened prior to access.

Error closing file(s).

Can't find file(s) associated with the current problem.

Cannot determine type of database file accessed.

Error reading from or writing to the database. This includes when error occurs when data in the database
is being overwritten. Also happens when "key" data can't be found in the database.

Error handling "dead space" in the database files.

Reached/exceeded maximum size allowed for any type of data, for example, grids, lists, time names, etc.

Memory manager problems: couldn't allocate/de-allocate memory, tried to de-allocate memory in use, or
ran out of buffer space.

Placing several items in same place pointing to a space allocation error.

Unknown keyword in the command string or command string not in the correct form.

No dynamic memory.

Couldn't find original data from which new data is defined with "same-as".

Name duplication of stored data.

Illegal name for a data type or data type not defined correctly if there is a certain definition expected for
the data. This happens when positions are stored, which requires three components, or if the components
has known limits, such as the mesh size for a grid, or the component types are expected to be of a certain
type, such as integer for the number of surfaces, real for a position, etc.

62

Table A3. Error messages reported by existing MSIO.

Readms/writms/closms - ms file lun not opened

Openms-cannot open lun = lun, would exceed the max number of ms files= maxmsfiles.

Readms-tried to read key keynuntber from file lun which has a max of maxkeys keys. (Only for number
key files.)

Readms lun lun, key keyname, not previously written. Read zeros instead.

Readms - number words written, number words requested.

Fastrw error in readms — lun = lun, KEY= keyname, expected number words, found number words.

Writms-tried to read key keynumber from file lun which has a max of maxkeys keys. (Only for number
key files.)

Writms-index file full for ms file lun.

Writms error on lun lun
Entry Key(l) = value [octal]
Present file size =filesize [octal] x 512 bytes
Proposed addition = bytesneeded [octal] x 512 bytes
No Action Taken

In Writms, no length for record, new value of number entered. (Warning only.)

In Writms, attempt to extend record. Key = keyname, new length = number old length = number. This
will be treatd as a new record. (Warning only.)

Writms - wrote number words on file lun at key keyname. (Generated only when diagnostics is turned
on.)

Fastrw error in writms - lun lun, expected to write number words, wrote number words.

Writms lun = lun key = keyname, number of words = number, No action taken. (Generated when number
is <=0.)

A. 1.6 DbLib Commands

There are 204 calls in 62 Fortran subroutines to dbinf o. There are 298 calls in 91 Fortran
subroutines to dbdata. There are 82 calls in 30 Fortran subroutines to dbf ile. There are 183
calls in 34 Fortran subroutines to buf f io.

The keywords used in the dbdata, dbinf o, and dbf ile command strings are given in Table
A4.

63

Table A4. Keywords used in present database commands.

Keyword Function

dbdata

OPEN Allocate space for data in memory.1

CLOSE Deallocate space for data in memory.

READ Transfer data from disk to memory.

WRITE Transfer data from memory to disk.

INITIALIZE Initialize a data type to its "set value".

HERE Point to a memory address, use idbloc() to get offset from idata(O). Used to tell the
database where something is.

LENGTH Size in words needed for data in memory. Used when saving Matrix Elements_##
and Bound_Surfs to specify actual length of record.

DATA Specify a data name.

GRID Specify a grid number.

TIME Specify the time stamp.

PREFLX Specify the file prefix. The value of Scratch is used for storing values in a
temporary file.

dbinfo

DEFINE Define or redefine a piece(s) of information

INQUIRE Request information about.. .(More information below.)

DATA Specify a data name.

PROBLEM Only used with INQUIRE. Get the generally useful stuff about the problem.

LISTDEF Used with DEFINE and ENQUIRE. When used with DEFINE, specifies the length
of the specified list. The specified list can then be used as the argument for the
LISTTYPE. Values used are SURFACE_LIST and SURFACENODES.

GRID Used with INQUIRE to read information about the grid and with DEFINE to
specify the grid.

SAME_AS The new data item is the same as a previously defined data item.

DATA TYPE Data is SPATIAL, BUFFER, or LIST

DATA_LENGTH Number of elements.

LISTTYPE Name of list definition for this data item. Defined in LIST DEF command. Values
used are SURFACELIST and SURFACENODES.

' All dbdata calls except the following include the OPEN keyword. In Spaini.F there are calls to dbdata with
commands to WRITE and WRITE CLOSE for the data POTS and POTSurf, RHOJon Surf, POTG, and
POT_Grid. In pupda2.F and setcnd.F, there are calls to dbdata with CLOSE for data PotBiasSurf.

64

Table A4. Keywords used in present database commands, (cont.)

dbinfo

DATADIM Length of each item in surface or spatial grid list. Never used with BUFFER data.

VALUETYPE Type of data: REAL/INTEGER/LOGICAL/OCTAL/ALPHA

ALPHA_LENGTH Length of ALPHA types in characters. If not specified defaults to 80.

SETVALUE Initialization value

OWNFILE Save data to a separate file. If argument is LONGNUMBER # or TWOWORD #,
where # is an integer, the separate file is a number key file with # records.

FILE_SUFFIX File suffix to use for data saved to separate file.

GRID_DEPEND TRUE/FALSE

TIME DEPEND TRUE/FALSE

LIST_LENGTH Used to LIST DEF to define length of list.

OUTSIDE This grid encloses the other grids. Used in DEFINE GRID=1 command to specify
that this is primary grid.

INSIDE This grid is inside another grid. Used in DEFINE GRID command.

GRID_SIZE Grid mesh size. Used in DEFINE GRID command.

MESH_RATIO Ratio of inner to outer mesh units. Used in DEFINE GRID command.

PRIMJIATIO Ratio of inner to primary mesh units. Used in DEFINE GRID command.

ORIGIN Used in DEFINE GRID command.

ORIGIN PRIM Origin location in primary grid units. Used in DEFINE GRID command.

EDGE_LENGTH Lengthx, length_y, length_z: Number of nodes along the grid edge, including end
points. Used in DEFPNE GRID command.

dbfile

OPEN Assign file prefix to run.

CLOSE Close file prefix.

EXIT Close all open files.

PREFIX Prefix to which command applies.

FILE_TYPE Always DYNAPAC.

SAVE_FILE Save file when done. The value FALSE is used with the PREFIX Scratch for
temporary storage. This does not work in the present implementation.

DIAGNOSTIC ON or OFF. Generate diagnostics. While apparently not used at present, this
functionality could be useful.

All of the dbinfo Inquire commands place information in the common block /odbicm/ in
include file odbinfo.h. Specifically:

65

call dbinfo(* inquire Problem') returns the number of grids in idingd and
xmesh for the main grid in rdimsh.

call dbinfo (v inquire List_Def=SURFACE_LIST') returns the number of surfaces
in idilsl

call dbinfo (v inquire List_Def=SURFACE_NODES') returns the number of nodes
in idilsl

Call dbinfo ("inquire Grid= #") returns the information given in Table A5 for
the specified grid.

Table A5. Information returned from dbinfo (Inquire Grid) commands.

Data Location

nxyz(3) idigln(3)

IGrid idiggd

IParen idiggo

MsRati idigmr

Ml Rat idigml

XmLocl rdigsz

ParOri(3) rdigor(3)

PriOri(3) rdigol(3)

The Fortran subroutines dbdata, dbf ile, dbinfo all have the same structure. They each
consist of calls to three subroutines. The first of these defines constants and handles
initialization, the second reads the keyword input and sets the appropriate variables and flags,
and the third performs the requested actions.

A. 1.7 Summary of DBLib Functionality Used

At its root, DBLib opens and closes the database, specifies data structures, writes data from
memory to disk, reads data from disk to memory, requests space for data in memory, and
releases the space when it is no longer needed. It allows for initialization of data to a specific
value. Data can either be read from or written to a specific memory location or memory can be
handled by DBLib.

Data structures are created to allow for automatic association of data items with surface
elements, surface nodes, or volume elements of the spatial grid. A grid or surface quantity can be
time dependent.

DBLib has special functions to specify the grid structure and the grid parameters.

66

A.2 DynaBase

DynaBase has the entry points given in Table A6. All of these entry points are called by the
BEMDLL module, although some are solely for the purpose of passing along the data to/from
the user interface.

Table A6. DynaBase entry points.

Entry point Data used by

CleanHistory BEMDLL

CloseFiles Scanner, BEMDLL, GUI

DynaFinish Not used

Dynalnitialize Used internally, BEMDLL

GetElements BEMDLL

GetMaterials BEMDLL

GetNodes BEMDLL

GetObjectOffset GUI

GetPotentialsAndFields GUI

GetPrimaryGridParams BEMDLL, GUI

GetTimeSteps BEMDLL, GUI

PutElement BEMDLL

PutMaterial BEMDLL

PutNodes BEMDLL

ReadPotentials BEMDLL, GUI

ReadSpecies GUI

SaveHistory BEMDLL

WriteFields Not used

WriteMesh BEMDLL

WritePotentials BEMDLL

GetGroundingEdges BEMDLL

GetlnitialPotential BEMDLL

A.3 Data Requests from Nascap-2k Java Interface

The Nascap-2k user interface provides the user with data from the database. The BEMDLL
methods called using JNI are listed in Table A7. These methods in turn call the DynaBase entry
points given in Table A6. Most of the JNI calls return a Boolean that indicates success.

67

Table A7. Data requests from user interface.

Java class JNI method Corresponding I)ynaBase entry
point/Comment

IonPlumeTableData GetObj ectOffsetFromDatabase GetObj ectOffset

GetParticleSpecies GetParticleSpecies ReadSpecies

Mesh readDynapac Calls BEMDLL which reads the geometry from
the database, constructs the elements and sends it
back to the Java, one element at a time.

Mesh numDynapacElts Gets information from BEMDLL rather than
database

Mesh closeDynapacFiles CloseFiles

Mesh getPrimaryGridParams GetPrimaryGridParams

Mesh getElement Gets information from BEMDLL rather than
database

FileUtilities setDirectory Calls _chdir

ChargingHistory getTimeStepTimes GetTimeSteps

ChargingHistory getPotentials GetPotentialsAndFields

ChargingHistory getFields GetPotentialsAndFields

ChargingHistory getCurrents GetPotentialsAndFields

ChargingHistory getChargeCurrents GetPotentialsAndFields

ChargingHistory getTrackCurrents GetPotentialsAndFields

A.4 Data

This section describes each of the data items in Nascap-2k 3.2. There are three kinds of data:
surface, grid, and other. Surface information is information associated with either each surface or
each surface node. Arrays of surface or surface node information are always dimensioned by
MaxSrf. The surface data items are given in Table A8 and Table A9. The local variable name is
that used by the Fortran. If the local variable name is listed, then at least once the data is
accessed using the HERE keyword, otherwise, the data is always managed by the memory
manager. Four data items are time dependent. Four data items are saved in the Scratch file.

Grid information is associated with each volume element, each node of each volume element,
or the 32 interpolants of each volume element. The gridded data items are given in Table A10.
Grid data is always handled by the memory manager. POTG is time dependent. Five data items
are saved in the Scratch file.

There are several data items stored in the database that are neither grid nor surface data. They
are listed in Table Al 1 and described further below.

The grid structure is saved by explicit dbinf o (inquire/Define Grid=) commands.

68

The BEM matrices are stored separately from the database in the file pref ixBEM. BEM.

Table A8. Data items associated with surfaces.

Data Item Name Dimension Time
depcn.

In
scratch
file

Local variable
name

Common
block

Include
file

Data
Type

Surf Elems 4 Nodes /Srfacs/ surfinfo.h

Centroids 3 Cntrds /Srfacs/ surfinfo.h

Surf_Norms 3 Snorms /Srfacs/ surfinfo.h

Surf_Attribs
(material, conductor,...)

10 Attrib /Srfacs objinfo.h Integer

DiagSurfs
(diagonal matrix
elements for surfaces?)

2 DgSurf /DagSrf/ none

POT_Surf 2 Pot none Real

POTS 2 yes Real

CHRGCURRENTSurf 1 yes ChargeCurrents none Real

CURRENT_Surf 1 yes TrackCurrents none Real

POT Bias Surf 1 yes Potentials none Real

FIX_Surf 2 ISrfFix none Alpha:4

OldPotSurf 2 Real

RSurf 2 yes Real

U_Surf 2 yes Real

AU_Surf 2 yes Real

DINVSurf 2 yes Real

RHOSurf 2 Real

RHO_Ion_Surf 2 Real

RH02_Surf 2 Real

PLOTSurf 1 Real

Table A9. Data items associated with surface nodes.

Data Item Name Dimension Local variable name Common block Include file Datatype

RNODES 3 Rnodes /Nodcom/ Nodeinfo.h Real

NodeSurfs 12 Jsurfs /Nodcom/ Nodeinfo.h Real

NodeSurfWeights 12 Snwgts /Nodcom/ Nodeinfo.h Real

RNodeRadii 1 RRadii /Grounding/ none Real

69

Table A10. Data items associated with volume elements.

Data item name Data hems per element In scratch file Data type

SCRNGrid Element centered yes Real

EFLD_Grid Element centered Real

RHO_GI Element centered Real

NeutDens Element centered Real

Ion Plume Element centered Real

RHO_Elec Element centered Real

RHO CEX Element centered Real

LTBL Element centered Integer

POT_Grid 32 Node Real

01d_Pot Grid 32 Node Real

R_Grid 32 Node yes Real

U_Grid 32 Node yes Real

AU_Grid 32 Node yes Real

DINVGrid 32 Node yes Real

RHO_Grid 32 Node Real

RH02_Grid 32 Node Real

RHOJon 32 Node Real

POTG 32 Node (time dependent) Real

PLOT 32 Node Real

CUR_Vec{X,Y,Z} 32 Node Real

NTBL 8 Node Integer

Nearst 8 Node Integer

70

Table All. Data items not associated with surfaces or volume elements.

Data item name Size local
variable
name

Common block Include file

History 100 none

Materials 316 /MatlsC/ ObjSurf.h

TimeParams MaxTim /TimeCm/ timeinfo.h

FluxTable 202 /TabCom/ pginfo.h &
psinfo.h

CurrentTable 1 +NTParm*MxTime /CurTab/ timeinfo.h

ObjectDimensions 7 Dxyz, Cxyz,
CnvFac

/ObjDim/

Conductor History CndHst(2, MaxCnd,
MxTime)

Potentials
Currents

/CndHst/ none

POTConductor 7*MaxCnd+3 /VConds/ none

Matrix_Elements_## MaxME /SPSTR2/ specell.h

BoundSurfs 9999 none

Particles_Record_ 1 1+4*MAXSPE /PTinfo/ ptdata.h

Particles_Record_2 10 /PTinf2/ ptdata.h

Particles_# Essentially unlimited See below

QConductors QCond

The data item History contains 8 pieces of information. They are
Algorithm (32_NODE, 8_NODE, or RESERVED), which is an outdated parameter
DebLim
Debye
Temp
Dens
ObjVel(3).

The data item Materials contains the contents of the common block /MatlsC/, the number
of materials, the names of each material, and the 20 properties associated with each material.
/MatlsC/ NMat, MCode(MaxMat), MatPr(20,MaxMat). Saving the information in this manner
enforces a 4 character limit on the material name, a limit of MaxMat materials, and 20 properties
per material.

The data item Time_Params contains the contents of common block /TimeCm/, which has
contents TimStr, TimRis, TimFal, LTimeUpdate, TimXt2(6).

The data item Fiux_Tabie contains the contents of common block /TabCom/, which has the
contents Ntable, Tablel(201). Tablei is an ion flux table that is used to compute sheath weights.

71

The data item Currentjrable contains the contents of common block /CurTab/, which has
the contents NTime, CurTbl(NTParm,MxTime). The values in CurTbl for a given time are the
contents of ActTim. The contents of /ActTim/ are ITime, DelTim, TotTim, TotCur, TotLos,
TotTrp, TotOth, LPotSv, TimXtr(2).

The data item objectDimensions contains the extent of the object in X, Y, and Z, the center
of the object with respect to the grid center, and the scale factor between the Object Toolkit
dimensions and the size used. These values are read from the grid definition file.

The data item Conductor_History contains conductor potentials and currents. Values are
read and written by DynaBase. The common block is used to format data for saving to disk and
reading from disk.

The data item Pot_Conductor contains the contents of common block /VConds/, which has
the contents VCond(MaxCnd), CType(MaxCnd), IBFrom(MaxCnd), PotAWA, PotMax, ICLow.
Saving the data in this way limits the number of conductors to MaxCnd and prohibits changing
this common block.

The data item Matrix_Elements_##, where ## is an integer, contains the contents of
common block /SPSTR2/ for a special element in grid ##. It has contents NCnt,
LCent(NCntMx), NCorns, LCorns(8), VESQ(MAXDIM). (NCnfMx=70,
NNodMx=32+2*NCntMx, MAXDIM=2*NNodMx**2). It has a secondary index of the special
element number.

The data item Bound_Surf s contains bounding surface information for a special element.
The information is created and written out by N2kDyn. It is then read by rsurfs.F and unpacked
into the contents of common blocks /CNodes/, /Surfcs/, and /CntCom/. The contents of these
common blocks are /CNodes/ NCNode, RCNode(3,NScsMx)
/Surfcs/ NCsurf, Jcsurf(4,NScsMx), SCNorm(3,NScsMx), PArea(NScsMx)
/CntCom/Ncnts, MatCnt(NCntMx), LTrans, LTCnt(lOOO), TNdCnt(4,2,1000).

The data item Particles_Record_i contains the beginnings of common block /PTinfo/,
which contains NumSpe, PChar2(MAXSPE), PMass2(MAXSPE), NPtTot(MAXSPE),
NPage(MAXSPE). The NActiv array, also kept in this common block, is not saved in the
database (at least not any more). Saving the data in this way enforces the limit of MaxSpe species
and prohibits changing this common block.

The data item Particies_Record_2 contains the contents of the common block /PTinf2/ for
each species. The contents of the common block is CSpeNm(MAXSPE), PTxtrl(8), Filler. The
last two items are extras for padding. This data record appears to contain only the species names.

The data items Particles_#, where # is an integer, contains the particle information. The
data is stored in pages, with the header of each page being the contents of common block
/PTDesc/. The common block contains ISpeci, JSpeci(2), PCharg, PMass, NParts, IPage,
IPType, PTxtr2(12). The information stored for each particle is that of common block /ActPrt/.
This common block contains /ActPrt/ PrtPos(3), PrtVel(3), PrtWgt, IPrtSt, IPrtGd, PrtTim,
NPrtSt, PrtEgy, PrtTemperature, PTxtr3(7). These data items are saved to separate files, one for

72

each species. Storing the data in this way prohibits changing the structure of these common
blocks. NPage in Particles_Record_i keeps track of how many pages of particles there are.
The header requires that different "type" particles must be different species. Nascap-2k does
insert "PLOT" in the species name of particles for plotting.

Q_Conductors appears to never be defined and therefore is not saved correctly.

A.4.1 Summary Comments

The data structures in Nascap-2k 3.2 allow for data to be indexed by the items given in Table
A12. Data items can be dimensioned to allow for "vector" quantities, such as the three
components of the surface normal or the ten "attributes" associated with each surface. Potentials
and currents can be time dependent as well as surface, grid, or conductor number dependent.
There are a very few common blocks and quantities not associated with volume elements,
surface elements, or surface elements that are stored. The fact that entire common blocks are
saved as a single data item means that changes in array limits make all existing databases out of
date.

Table A12. Quantities that are used as indexes.

Index quantities
Surface element number

Surface node number

Volume element (grid, element number, node/interpolant)

Special element number

Conductor number

Particle species

Particle number within species

Time (a second index)

A.5 Data Storage

MSIO presently can use any of three methods to track the data in the database file: number
key, name key, and two-word key. The details of the index structure are responsible for some of
the limits on data record and file sizes.

For number key and two-word key files, the key is an integer pointer. For number key and
name key files, the index stores the starting location of the record and the length of the record in
a single word. For two-word key files, the starting location and length are stored in consecutive
words. The largest possible key is one less than the length of the index for number key files and
half of one less than the length of the index for two-word key files.

73

For name key files, the key is a string. For a given file, the key can be any multiple of 4
characters, but the string must be the same length for each record in the file. The keys are stored
in the index with the word containing the location and length of the record following the key.

For number key and name key files, the location of the last record must be less than (216 -1) x
128 words/sector x 4 bytes/word. Thus the maximum file size is about 32 MB. That the data is
stored in 128 word sectors was a compromise to maximize file size and record length while
minimizing slack space subject to the constraint that record length and location must be stored in
a single word.

For number key and name key files, the length of a record is limited to 216 -1=65535 words.
As a grid's worth of information is stored in a single record, this limits the number of nodes for a
grid to 16383 (4 pieces of information per grid point.)

For two-word key files, the file size limit is on the order of 2 terabytes, and the length of a
record is limited to 2 -1, which is greater than 4x10 words.

DBLib adds an additional layer on top of MSIO. DBLib maintains a list of all data items,
the file in which each is stored, and the number key used by MSIO. (DBLib uses only number
key MSIO files.) DBLib also maintains general problem information accessed through dbinf o
DEFINE and INQUIRE commands.

A.6 Searches Contemplated

We would like to be able to obtain time histories of, or values at a specific time (ordered by
magnitude) for, potentials and currents (all components) for groups of surface elements where
the group is constructed by an arbitrary set of logical operators. These operators would be unions
and intersections of surface elements of specified materials, conductors, orientation, sun/shaded
condition, and range of values of potential or current component at the final state. Developing
the desired list of surfaces given the search criteria might be easiest done in Fortran, C++, or
Java. The database could then be queried for the time history of the relevant quantities for the list
of surface elements.

74

APPENDIX B. NEW DATA ITEM NAMES

Each item stored has a unique case-insensitive 16 character (4 words) identifying name key

Time dependent data is stored in a file that uses a 16-character name key and a number key in
the following word as an identifier (5 words). (This means that time-dependent data is stored in
different file(s) than present, non-time-dependent, data.) The number key gives the time index.

For time-dependent data, the same name key is used for both the time-dependent and present
value.

In the underlying MSIO index, the characters are strictly upper case. The characters are
converted to upper case by MSIO on reading and writing, so that the rest of the code can be
insensitive to case.

We are taking this opportunity to switch to a new set of data item names that provide more
information about the data. Data item names start with a few characters that specify the type of
data, as in surface, node, grid, particle, material, etc. Each gridded data item has a data item
name of no more than 12 characters, an underscore, and three digits that specify the grid.
(12characters_###). (Data item names are not padded to make sure they are 12 characters long.)
The new data item names are given in the tables that follow.

The data stored with data item names R_Surf, USurf, AU_Surf, DINVSurf, RGrid,
UGrid, AUGrid, and DINVGrid will ultimately not be kept in the database. Therefore, we are
not giving them new data item names. SCRNGrid will be moved from the scratch file to the
permanent file. QConductors is presently not saved correctly, so it will be deleted.

75

Table Bl. Data items associated with surfaces.

Old Data Item Name NcwData item
name (16
characters max)

Dimension Time
depen.

Local variable
name

Common
block

Data
Type

Incorporated
in Nascap-2k

SurfJElems Srf_Element 4 Nodes /Srfacs/ yes

Centroids SrfCentroid 3 Cntrds /Srfacs/ yes

Surf_Norms Srf Normal 3 Snorms /Srfacs/ yes

Surf_Attribs
(material, conductor,...)

Srf_Attribute 10 Attrib /Srfacs Integer yes

Diag_Surfs
(diagonal matrix
elements for surfaces?)

Srf DiagElement 2 DgSurf /DagSrf/ yes

POT_Surf SrfPotential 2 Pot Real yes

POTS Srf_Potential 2 yes Real no

CHRG_CURRENT_Surf Srf_CurrentCharg 1 yes ChargeCurrents Real yes

CURRENT_Surf Srf CurrentTrack 1 yes TrackCurrents Real yes

POT Bias Surf Srf_BiasPot 1 yes Potentials Real no

FIXSurf Srf_PotFixed 2 ISrfFix Alpha: 4 yes

01d_Pot_Surf SrfPotentialOld 2 Real yes

R_Surf RSurf 2 Real yes

U_Surf U_Surf 2 Real yes

AU_Surf AUSurf 2 Real yes

DINVSurf DINVSurf 2 Real yes

RHO_Surf SrfFOChargeDen 2 Real yes

RHO_Ion_Surf Srf_Charge 2 Real yes

RH02_Surf SrfFl Derivative 2 Real yes

PLOTSurf Srf_Plot 1 Real yes

Table B2. Data items associated with surface nodes.

Old data item
name

New data item
name (16
characters max)

Dimension Local
variable
name

Common
block

Data
type

Incorporated
into Nascap-
2k

RNODES NodPosition 3 Rnodes /Nodcom/ Real yes

Node_Surfs Nod_Surface 12 Jsurfs /NodconV Real yes

Node_Surf_Weights Nod_SrfWeights 12 Snwgts /Nodcom/ Real yes

RNodeRadii Nod Radii 1 RRadii /Grounding/' Real yes

76

Table B3. Data items associated with volume elements.

Old data item
name

New data item
name
(12 Characters
max)

Data items per
element

Data
type

Incorporated into
Nascap-2k

SCRNGrid GElmFlDeriv Element centered Real yes

EFLD_Grid GElm_EField Element centered Real yes

RHO_GI GElmGIs Element centered Real yes

NeutDens GElmNeuDen Element centered Real yes

IonPlume GElmPlmDen Element centered Real yes

RHO Elec GElm_ChrgDen Element centered Real yes

RHO CEX GElmCExDen Element centered Real no

LTBL GElmJLTBL Element centered Integer yes

POTGrid GNodPot 32 Node Real yes

01d_Pot_Grid GNod__Pot01d 32 Node Real yes

R_Grid R_Grid 32 Node Real yes

UGnd U_Grid 32 Node Real yes

AUGrid AU_Grid 32 Node Real yes

DINVGrid DINVGrid 32 Node Real yes

RHOGrid GNodFOPhiFl 32 Node Real yes

RH02_Grid GNodFlDeriv 32 Node Real yes

RHO_Ion GNodCharge 32 Node Real yes

POTG GNodPot 32 Node (time
dependent)

Real no

PLOT GNod_Plot 32 Node Real yes

CUR_Vec{X,Y,Z} GNod_Crnt{X,Y,Z} 32 Node Real yes

NTBL GNod8_NodTbl 8 Node Integer yes

Nearst GNod8_Nearst 8 Node Integer yes

77

Table B4. Data items not associated with surfaces or volume elements.

Old data item
name

New data item
name (16 characters
max)

Time
dependent

Local
variable
name

Common
block

Incorporated
into Nascap-
2k

History General yes

Materials Material_### /MatlsC/ no

Time_Params Gen TimeParms /TimeCm/ yes

Flux_Table GenFluxTable /TabCom/ yes

CurrentTable Gen CurrentTable 'CurTab/ yes

Obj ectDimensions Gen ObjectSize Dxyz 'Obj Dim/' yes

ConductorHistory CndPotential
CndCurrentCharg

yes Potentials
Currents

/CndHst/ no

POTConductor Cnd_Potential
CndBCType
Cnd_BiasFrom

/'VConds/ no

Matrix Elements_## /SPSTR2/ yes Mlrxfclems// IIII till II

Bound Surfs yes BndSrfcs_######

Particles_Record_l Species_## /PTinfo/ no

Particles_Record_2 Species_## /PTinf2/ no

Particles # Prtcls_S##_****
= species num
**** = page num

no

None presently Grid_### /ActGrd/ yes

None presently Version yes

78

APPENDIX C. N2KDBTEST

We developed a test bed, called N2kDBTest, that contains a representative set (not
exhaustive) of the database calls made by Nascap-2k. Functionality is being verified using
N2kDBTest before any testing is done with Nascap-2k.

N2kDBTest was developed in parallel with, and independently of, the new database and
wrapper codes.

N2kDBTest includes examples of all types of dbdata, dbinfo, dbf ile, and buf f io calls
presently used. It includes creating, opening, reading, writing, closing. It includes access to data
in the main database and in auxiliary files. Appendix A provides a guide to the capabilities
needed.

N2kDBTest writes test data. During and after execution, the tester checks that the data is
read in correctly, with proper alignment, and without overwriting the beginning or end of the
intended space.

N2kDBTest will check that the types of error returns that are currently used productively in
Nascap-2k are handled and returned correctly.

N2kDBTest was used to verify that premature code exit does not render the database
unusable.

N2kDBTest includes both the interim implementation and direct calls to the new database,
and is written such that N2kDBTest subroutines can be used as examples when converting the
interim implementation calls to the final, direct calls.

N2kDBTest tests C++ and Java access to the database (write with Java, read with C++, etc.)
and contains sufficient examples to be used as a guide to database use in those languages.

C.l. Details of N2kDBTest

N2kDbTest is a test bed for N2kDB. It is a functioning code that uses the database in much
the same manner as Nascap-2k. It consists of source code, input files (object, project, grid, and
text input files) and the anticipated output files—both text and database.

N2kDbTest works with DBLib, with N2kDB, and in an intermediate manner representative
of the intermediate implementation.

The code consists of a Java interface and two dynamically linked libraries. The jar, the two
dynamically linked libraries, the input files (N2kDBTestObject.xml, N2kDBTest.grd, InFile.txt,
PGInFile.txt, and particles.txt), and the usual Scheme files should be placed in the working
directory. DynaBase.DLL should be in the user's path.

Source code for the dynamically linked libraries can be loaded from Source Safe by loading
the solution file $/SpacePhysics/N2K/DBTest.sln into the same directory as Nascap2k.sln.

79

Source code for the Java is located at $/SpacePhysics/Nascap2k/N2kDBTest. The input files are
located at $SpacePhysics/Nascap2k/N2kDBTest/bin.

The interface is shown in Figure Cl.

Compute

Get Results

Run Part Gen

Primary grid extent is 15 by 17 by 19

Xmesh =0.6000000238418579

Offset is (0.0,0.0,0.0)

There are 3 timesteps

3 •

Potentials attimestep 3 are 4.0,6.0,8.0,10.0.12.0,14.0,16.0,18.0,20.0,22.0,
24.0,26.0,28.0,30.0,32.0,34.0.36.0,38.0,40.0,42.0,44.0,46.0,48.0,50.0,52.0
,54.0.56.0,58.0,60.0,62.0,64.0.66.0.68.0,70.0,72.0,74.0.76.0,78.0,80.0,82.
0,84.0,86.0.88.0,90.0,92.0,94.0.96.0.98.0.100.0.102.0,104.0.106.0.108.0.1
10.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

Name Mass (kg) Charge (co...
ELECTRON 9.110E-31 -1.602E-19
HYDROGEN 1.670E-27 1.602E-19

35 •

Surface 35 potentials overtime are 70.0,71.0,72.0,

Figure Cl. N2kDBTest Java interface.

The "Compute" button creates the main database file N2kDBTest.DP. The contents of the
file after execution are given in Table Cl.

80

Table Cl. Contents of N2kDBTest.DP after execution

Key Contents

1,2,4,5,6,7,
8,9, 10,11

Database description information. N2kDB stores this information differently or not at
all.

20 Material specification in the format of the MATL common block.

21 Element nodes

22 Element centroids

23 Element normals

24 Element attributes. Material #, Conductor #, four "-l"s (conducting edges), initial
potential, and three zeros

25 Node locations referenced to the lower left corner of the grid

26 Node Radii (-1 as undefined)

27 Element potentials and fields, the "potent" part of the test code sets each entry to the
entry number plus the time step number.

28 Fix Element array. ASCII data, either "FIX " or "FLOA" for each element (One extra
item, maybe associated with the conductor.)

29 Conductor potentials

30 Potential bias values

31 Contents of ObjDim common block

32 RHOGI for grid 1, initialized to 1

33 Pot_Grid, for grid 1, first point is grid number, last point is 9999.0, the rest of the
points are the previous value + the time step number

34 RHOGI for grid 2, initialized to 1

35 Pot_Grid, for grid 2, with values the same as grid 1 (except for the grid number)

36 RHO_Surf, 2 x 54, all set to "3.0"

37 100 followed by 101 "-2"s, FluxTable,

38 15001 entries. First entry is number of iterations. Entry 2 is ' 1.' Entry 12 is '2.' Entry
22 is '3.' The rest are all zeros, CURRENTTable

39 2, -1.602e-19, 1.602e-19, 0,0,0,0,0,0,0,9.1097e-31, 1.67e-27, then zeros, entries 29
and 30 are 1.

40 ELECTRON, HYDROGEN, and blanks

The file N2kDBTest.POTG is also created. Starting with key "20," it contains the potentials
(PotGrid) for each timestep. See key 33 above for values. The file N2kDBTest.POTS is also
created. Starting with key "20," it contains the surface potentials and electric fields for each
timestep. See key 27 above for values.

Empty CUR and CHG files are also created.

The text output file OutFile.txt is also created.

SI

The "Run PartGen" button creates the files N2kDBTest.PTl and N2kDBTest.PT2. Each has
4 records. The contents of the records in N2kDBTest.PTl are given in Table C2. The contents of
N2kDBTest.PT2 are the same, except for the substitutions given in Table C3.

Table C2. Contents of N2kDBTest.PTl file.

Key Entries Contents

1-20 1, ELEC, TRON, -1.602e-19, 9.1097e-31, 9, 1, 4

21-40 7.58333e-l, 3.18333, 1.208333,-1.326109e6, 1.326109e6, 0, 1.0,0,0,0,0, 10.0,0.1

41-60 7.58333e-l, 3.18333, 1.208333, 0.0,1.875401e6,0.0, 1.0,0,0,0,0, 10.0,0.1

61-80 7.58333e-l, 3.18333, 1.208333, 1.326109e6, 1.326109e6,0.0, 1.0,0,0,0,0, 10.0,0.1

81-100 2.416667e-l, 3.18333, 1.208333,-1.326109e6, 1.326109e6, 0, 1.0,0,0,0,0, 10.0,0.1

101-
140

Each set of 20 is identical to the one above except for the velocity in fields 4 through 6.

1 141-
200

Each set of 60 is identical to the one above except for the position in fields 1 through 3
and the velocity in fields 4 through 6. There are three particles at each position, each
with a different velocity. The velocities are along coordinate axes and at 45° of axes.

2 1-20 1, ELEC, TRON, -1.602e-19, 9.1097e-31, 9, 2, 4

2 21-200 These entries follow the same pattern as for key 1.

3 1-20 1, ELEC, TRON, -1.602e-19, 9.1097e-31, 9, 3, 4

3 21-200 These entries follow the same pattern as for key 1.

4 1-20 1, ELEC, TRON, -1.602e-19, 9.1097e-31, 0, 1, 4

4 21-200 All zeros.

Table C3. Differences between N2kDBTest.PTl and N2kDBTest.PT2.

N2kDBTest.PTl N2kDBTest.PT2

ELECTRON HYDROGEN

-1.602e-19 1.602e-19

9.1097e-31 1.67e-27

1.326109e6 3.097227e4

1.875401e6 4.38014e4

The text output file PGOutFile.txt is also created.

The "Get Results" button reads from an existing database. The first pulldown updates the
display of the potentials for all surfaces for a specific timestep. The second pulldown updates the
display of the potentials for a specific surface for all timesteps.

The database should also be examined using N2kDB Tool.

82

APPENDIX D. NASCAP-2K TESTING

Functionality of the full code is verified by comparison of standard test cases performed with
the old and new databases. Full code tests will be repeated as each section of code is transformed
from the wrapped database code to direct calls to the new database.

Initial testing is being performed by running standard test cases with the interim
implementation. Any differences between results obtained using the interim implementation and
the original code will be understood and, if appropriate, corrected.

Replacement of the interim implementation with the final implementation will be done in
work packages of a few subroutines within a single module. It is not necessary to run all test
cases after each work package, but at least one of the standard test cases known to exercise the
module under modification will be run.

After all the interim implementation code has been replaced, Nascap-2k will be modified to
take advantage of the new database by relaxing some of the more painful limitations. The full
suite of test cases will be run after each such task, as well a new, documented test case that
exercises the enhancement. The new test case will be documented and preserved, but need not
become part of the standard test suite.

83

APPENDIX E. REQUIREMENTS VERIFICATION

We have reviewed this document and Software Requirements Specification for Nascap-2k
Database and Memory Manager simultaneously and verified that the design satisfies the
specification. The manner in which each paragraph of the specification is satisfied is described
below.

E.l. Introduction

E.l.l. Purpose

N/A

E.l.2. Project Scope

The requirements mentioned in the project scope section are almost all repeated and/or
addressed in more detail at later points in the specification document. In this section we only
address those issues not repeated. The other issues are discussed in the follow sections.

The use of MSIO with a Metadata header and two 32-bit words to specify the record length
and location—along with changes in the way species, material, and grid information is stored
and the compartmentalization of the code—ensure that N2kDB will accommodate the continuing
expansion of Nascap-2k

The vanilla ReadDatabase and writeDatabase commands allow it to be used by any code,
including other plasma interactions codes such as COLISEUM and EPIC The GridData class
can be easily extended to accommodate specialized needs of other codes.

The desire for a wrapper to the new database that understands most of the present string
commands is addressed by the Interim implementation discussed in Section 4.1.1.

E.2. Overall Description

E.2.1. Product Perspective

N/A

E.2.2. Product Features

The design of N2kDB addresses all of the required features and functions: data storage, data
transfer, memory management, data access, data structures.

E.2.3. Operating Environment

Compatibility with all of the Nascap-2k operating environments is accomplished by the use
of standard C++ and wrapping platform- and compiler-dependent code in #define wrappers.
During development the code is being tested under the environments presently available at

85

SAIC, Windows XP, LINUX, and MacOS X UNIX (10.5). The MacOS X Unix is being used to
test multiprocessor and 64-bit operations.

E.2.4. Design and Implementation Constraints

No provision is made for pre-existing 7Vascap-2/c-generated DynaPAC databases.

E.2.5. User Documentation

This design document does not address the requirement to modify the existing Nascap-2k
manual. This document is the desired documentation.

E.3. System Features

E.3.1. Data Storage Capacity and Format

E.3.1.1. Description and Priority

The N2kDB functions (Table 3) allow Nascap-2k to specify the data item name and length of
any data record. There are some specialized functions for the handling of grid data, species data,
material data, etc. that separate the format in which data is stored from the format in which it is
used. The primary benefit is to make it easier to increase limits on quantities such as number of
grids, without making existing database files obsolete.

While N2kDB includes the Memory Manager, MemoryManager is a separate singleton class
accessed directly or as part of database access.

E.3.1.2. Functional Requirements

E.3.1.2.1 Maximum Database File Size

Storing the location of the start of a record in a 32 bit word means that the largest addressable
location is 2 . If data were stored in byte sized chunks, this would allow individual database
files up to 4 GB. Using a sector size of 512 bytes allows for files sizes up to 2 TB, which exceeds
the 100 GB requirement.

E.3.1.2.2 Maximum Record Size

Storing the length of a record in a 32-bit word means that the maximum record length is 2 ".
words (either 32-bit or 64-bit as specified in the file metadata), which exceeds 109 words. This
exceeds the 10 words requirement.

E.3.1.2.3 Maximum Rows in a Table

The maximum number of records is set separately for each MSIO file. Since this value is
stored in the MetaData, it can be adjusted. The initial values are set to accommodate the
specified number of records. (Section 4.2.3)

86

E.3.1.2.4 Data Format (ASCII, XML, binary,...)

The choice to use MSIO means that all data is stored in binary format.

The accommodation of 32- and 64-bit words is being addressed by specifying the word size
of the database in the MSIO metadata and by coding choices. The actual reading and writing of
data is data type agnostic. Data types which may be different in 32- and 64-bit environments are
being used cautiously. Code whose functionality may differ in the different environments is
identified for conditional compilation.

E.3.1.2.5 Data in Single or Multiple Files

The specified files that compose the database are identified in Section 4.1 above.

E.3.I.2.6 File Sharing

The use of a separate file for the matrix elements (prefix.NSE), accommodates the desire to
share these quantities between projects. Under the present design, under some operating systems
two projects are able to access the same file at the same time.

E.3.1.2.7 Need for Standard Access Format

The N2kDB functions given in Table 3 are accessed from Fortran, C++, and Java in the same
manner. Wrappers in N2kDB address the language differences.

E.3.1.2.8 Data Structure

The use of MSIO insures that the addition of and increase in the length of new records does
not make existing N2kDB databases obsolete. The changes in the way species, grid, and material
information is stored allows for future increases in the number of these quantities without
revising the database structure. In addition, the use of a database version allows for conversions
from one database version to another and, in the worse case, the rejection of an incompatible
database.

The requirement for the size of each record to be stored in the database is addressed by the
use of MSIO. The GetLength function of N2kDB provides for easy access to this length.

E. 3.1.2.9 Error handling requirements

The approach to error handling provides diagnostic information for normal and debug
operations.

E.3.2. Data Transfer Rate

E.3.2.1. Description and Priority

The desired rewrite of portions of the Fortran code to eliminate unnecessary reads and writes
is not addressed in this document.

S7

E.3.2.2. Functional Requirements

E.3.2.2.I Size and Frequency of Reads and Writes

Data reads and writes are handled at the lowest possible level. Sorts to locate keys are done
using binary comparisons.

E.3.2.2.2 Allowable Impact on Calculation Time

N2kDBTest is being used to evaluate the speed of reading and writing data in order to
identify any problems.

E.3.2.2.3 Error Handling Requirements

The approach to error handling provides diagnostic information for normal and debug
operations.

E.3.3. Memory Management

E.3.3.1. Description and Priority

The requirement for a separate Memory Manager is addressed by making MemoryManager a
separate singleton class accessed directly or as part of database access.

E.3.3.2. Functional Requirements

E.3.3.2.1 Maximum Memory Required

The design of the Memory Manager provides no inherent limits on the amount of memory
beyond that of the operating system.

E.3.3.2.2 Allowable Impact on Calculation Time

The impact of memory management operations on calculational time remains to be
determined. If the present scheme is too slow, another will be used.

E.3.3.2.3 Error Handling Requirements

The approach to error handling provides diagnostic information for normal and debug
operations.

E.3.3.2.4 Data Size Determination

As required, memory requests are for a specific number of words. The requests return a
pointer to the location of the allocated memory.

88

E. 3.3.2.5 Multiprocessor Operation

No accommodations are anticipated to be necessary in order for the memory manager to
operate smoothly in a multiprocessor environment.

E.3.4. Data Access

E.3.4.1. Description and Priority

The N2kDB functions given in Table 3 are accessed from Fortran, C++, and Java in the same
manner. Wrappers in N2kDB address the language differences.

N2kDB Tool addresses the requirement for a stand-alone database management tool. Section
6.3 gives the design for this tool

I-.3.4.2. Functional Requirements

On operating systems that do not allow for read/write access of the same file by multiple
processes, simultaneous read access of a database by multiple users is accomplished by opening
the database as read only.

Nascap-2k will insure that only a single thread attempts to access the database at one time.
Read/Write access to the database from the multiple parts ofNascap-2k is accomplished by the
first part closing the database before transferring control and the second part opening the
database for write access.

Database access synchronization is accomplished by writing the MSIO file index each time a
database write changes the index.

That the index to the database files is only written when it changes, addresses the
requirement that database files will not be changed by read access.

E.3.5. Support of Pre-Existing Databases

It has been decided that no database conversion tool will be built. The MSIO class can
convert an old MSIO formatted file into a new MSIO formatted file. This feature has proven to
be useful during development.

E.3.6. Data Structure

MSIO was chosen as the tool for database file access.

We identified the searches that would be useful to Nascap-2k users in Section A.6. The
sorting will not be done within the database software. The "History" functions of N2kDB will
simplify access of the time history of potentials and currents for specific surfaces and
conductors.

89

E.4. External Interface Requirements

E.4.1. User Interfaces

N2kDB is a dynamically linked library. Its exposed functions are accessible through Nascap-
2k. N2kDB Tool statically links with its underlying functions.

E.4.2. Hardware Interfaces

N/A

E.4.3. Software Interfaces

The first paragraph and table of Section 6.1 above address the design for a common access
format and specifies all of the exposed functions.

E.4.4. Communications Interfaces

N2kDB Tool addresses the desire for a stand alone database management tool.

E.5. Additional Requirements from Section 3.3 of this Document

The additional requirements given in Section 3.3 of this document are addressed as follows.

The desire that the code be written in a cross platform manner is accomplished by the use of
standard C++ and wrapping platform- and compiler-dependent code in #define wrappers.

The use of metadata to specify the word length and the storage of data in a data type agnostic
fashion makes Nascap-2k database files nearly platform independent. Compatibility between
Big-endian and little-endian computers could be accomplished through the use of the version
number stored at the beginning of the metadata. At this time, we do not plan to address this issue.

Ease of maintenance is being addressed in several fashions. All code and documentation is
kept together in the Source Safe database as specified in Section 5.2, coding standards are
specified in Section 5.3, the separation of database and memory manager operations into N2kDB
and the internal structure of N2kDB assures encapsulation and generality. The code structures
and data storage structures being used will permit examination of data in a debugger to a much
greater extent than the present code. Documentation is being written in concert with code
development. The source code documentation generator tool DOxygen and complete file headers
are being used to generate drawings of code structure and lists of properties and methods. As
none of the programmers like database jargon, it is not being used.

E.6. Appendix References

1. Fife, J. M. et al., The Development of a Flexible, Usable Plasma Interaction Modeling
System, AIAA-2002-4267, Joint Propulsion Conference, Indianapolis, Indiana, 2002.

90

I.G. Mikellides, et al., Assessment of spacecraft systems integration using the Electric
Propulsion Interactions Code (EPIC), AIAA 02-3667, Joint Propulsion Conference,
Indianapolis, IN, July 2002.

91

APPENDIX F. IMPLEMENTATION PLAN

F.l. Schedule

Nascap-2k 3.2 was released (January 2009) just before the incorporation of the new database
and memory management system. The new database and memory management system will be
fully functional and tested by the time Nascap-2k 4.1 is released at the end of the contract in
February 2010.

F.2. Tasks

There are eight steps in the implementation of the new database and memory management
system. They are listed in Table Fl. The eight steps are further broken down in Table F2.
Nascap-2k 3.2 does not include any of the new database and memory management software and
was released shortly before implementation of the new software began. While N2kDBTest and
N2kDB Tool were started before N2kDB, their development proceeded in parallel with N2kDB.

Table F2 specifies the required skills and level of effort required for each task. In some cases
the person with the skills is specified by initial. Myron is only specified for those tasks in which
his involvement is essential. Myron and Victoria provide their expertise with design and Nascap-
2k details to other team members as needed. The level of effort required is a ball park figure
primarily for staff planning and determination of the scope of each task. Variances of up to 50%
for some tasks may well occur.

Table Fl. Implementation steps.

Step Description

1 Design

2 Write underlying database access software

3 Write N2kDBTest and N2kDB Tool

4 Write N2kDB

5 Release Nascap-2k 3.2

6 Interim implementation

7 Full implementation

8 Test and release Nascap-2k 4.1

93

Table F2. Tasks to be completed.

Step Task Who/Skills Days or
Weeks

Determine if we will use SQLite or MSIO. Team Done
Resolve issues remaining in Section 9. Team 2 days Done
Design software. (Write Section 6 of this document) C++ design 1-2 w Done
Verify design satisfies specification. V Id Done
Specify new data item names. V&M 1 d Done

2 Translate MSIO from Fortran to C++ and add additional functionality
and unit tests of MSIO. Document MSIO. (MSIO only)

C++ 2w Done

2 Translate fastio from old C to modern C++ and unit test of fastio.
Document fastio. (MSIO only)

C++ 1 w Done

3 Write and document N2kDB Tool, (includes user interface) C++ 2w Done
3 Write N2kDBTest and document correct behavior. V 2w Done
4 Write and document N2kDBDataModel class of N2kDB and unit tests

of the class.
C++ 2w Done

4 Write and document Database class of N2kDB and unit tests of the
class.

C++ 2w Done

4 Write and document MemoryManager class and unit tests of the class. C++ 2w Done
4 Write and document GridData and History classes of N2kDB and unit

tests of the classes.
C++ 1-2 w Done

4 Write and document subroutines needed for interim implementation. V 1 w Done
4 Prepare N2kDB documentation document. V 3d Done
5 Release Nascap-2k 3.2. V&K 2w Done
6 Add explicit specification of space for non-gridded data that is

presently handled by the memory manager.
V 4d

6 Move data initialization to s3set and s3zero. VorK 2d Done
6 Switch to new data item names. VorK 2d Done
6 Eliminate saving of items presently saved to Scratch file. V 1 d
6 Implement interim implementation and test off-line. Document testing. V&K 1 w Done
6 After interim implementation has been fully tested off-line, switch main

line Nascap-2k code to new database using interim implementation.
K 2d 50%

7 Write Fortran wrapper subroutines. V 3d
7 Convert Fortran portion of Nascap-2k from interim implementation of

database to final implementation.
VorK 3w

7 Eliminate use of database as extended memory. V 3d
7 Move DynaBase methods used by BEMDLL to BEMDLL. VorK 2w
7 Replace data requests from Java user interface through DynaBase with

calls directly to N2kDB.
VorK 2 w

7 Implement any changes to where general problem information is saved,
pre//xProject.xml,/7re/?xObject.xml, or database.

VorK 1 w

8 Test Nascap-2k 4.1 for at least six months of regular use before release. V&M

F.3. Revisions Needed to FORTRAN Portion of JVascap-2k

The DBLib subroutines dbf ile, dbdata, and dbinf o will be replaced with direct calls to
N2kDB functions and possibly FORTRAN wrapper functions that access N2kDB and reorganize

94

the data (such as to place it in correct places within a common block). The changes will be made
one data item at a time. Most of the changes will be straightforward. The materials, particles, and
conductor information require reformatting of the data.

Presently the material associated with a surface is stored in the attributes array by number.
This may need to be rethought.

IPType will be added to the /ActPrt/ common block. The way in which particle locations are
to be saved requires not saving extra blank space at the end of the page as is presently done.

There are several items in the common block saved using the POTConductor data item
name. Only the conductor potential appears to ever be accessed. The rest of the items are for the
old time dependence in Potent that is used to represent a sudden applied potential. If this code is
ever resurrected, we may also need to save ICLow.

Conductor potentials and currents are saved at the end of the surface arrays. This will no
longer be done.

95

APPENDIX G. OPEN ISSUES

The following open issues remain to be resolved:

Some quantities are presently saved both in Nascap-2k database and the/?re/txProject.xmI
or/ve/ixObject.xml files. We need to revisit their interaction.

We need to decide under what circumstances the dead space in the MSIO file should be
cleared out. It should not be done every time the database is closed.

97

